Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation
Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic segmentation (CSS) is an emerging field in computer vision. We identify a problem in CSS: A model tends to be confused between old and new c...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 16845 - 16854 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2022
|
| Schlagworte: | |
| ISSN: | 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic segmentation (CSS) is an emerging field in computer vision. We identify a problem in CSS: A model tends to be confused between old and new classes that are visually similar, which makes it forget the old ones. To address this gap, we propose REMINDER - a new CSS framework and a novel class similarity knowledge distillation (CSW-KD) method. Our CSW-KD method distills the knowledge of a previous model on old classes that are similar to the new one. This provides two main benefits: (i) selectively revising old classes that are more likely to be forgotten, and (ii) better learning new classes by relating them with the previously seen classes. Extensive experiments on Pascal-Voc 2012 and ADE20k datasets show that our approach outperforms state-of-the-art methods on standard CSS settings by up to 7.07% and 8.49%, respectively. |
|---|---|
| AbstractList | Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic segmentation (CSS) is an emerging field in computer vision. We identify a problem in CSS: A model tends to be confused between old and new classes that are visually similar, which makes it forget the old ones. To address this gap, we propose REMINDER - a new CSS framework and a novel class similarity knowledge distillation (CSW-KD) method. Our CSW-KD method distills the knowledge of a previous model on old classes that are similar to the new one. This provides two main benefits: (i) selectively revising old classes that are more likely to be forgotten, and (ii) better learning new classes by relating them with the previously seen classes. Extensive experiments on Pascal-Voc 2012 and ADE20k datasets show that our approach outperforms state-of-the-art methods on standard CSS settings by up to 7.07% and 8.49%, respectively. |
| Author | Ta, The-Anh Phung, Son Lam Bouzerdoum, Abdesselam Tran-Thanh, Long Phan, Minh Hieu |
| Author_xml | – sequence: 1 givenname: Minh Hieu surname: Phan fullname: Phan, Minh Hieu email: vmhp806@uowmail.edu.au organization: University of Wollongong – sequence: 2 givenname: The-Anh surname: Ta fullname: Ta, The-Anh email: anhtt71@fsoft.com.vn organization: FPT Software, AIC – sequence: 3 givenname: Son Lam surname: Phung fullname: Phung, Son Lam email: phung@uow.edu.au organization: University of Wollongong – sequence: 4 givenname: Long surname: Tran-Thanh fullname: Tran-Thanh, Long email: long.tran-thanh@warwick.ac.uk organization: University of Warwick – sequence: 5 givenname: Abdesselam surname: Bouzerdoum fullname: Bouzerdoum, Abdesselam email: a.bouzerdoum@uow.edu.au organization: University of Wollongong |
| BookMark | eNotjF1LwzAYRqMouM39Ar3IH2jNR_M2uZT6iQPFTb0cSfu2RtJU2ojs3zvUq3PgPDxzchSHiIScc5ZzzsxF9fr0rARonQsmRM44SDggcw6gCjAFyEMy4wxkBoabE7Kcpg_GmBScg9EzsqmCnSa69r0PdvRpR9_Qd-8JG_oQh--ATYf0yk_Jh2CTHyJth5FWQ0w-ftlA19jbvdd76XqM6XdzSo5bGyZc_nNBXm6uN9Vdtnq8va8uV5kXTKYMVa3bEktdKKENyMIKKYQT1pkWtWrUvjWN4g60QsUR2tqAcE5x7pyuG7kgZ3-_HhG3n6Pv7bjbGl0aoUv5AxtwVD4 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.01636 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 16854 |
| ExternalDocumentID | 9879287 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-e5c8f7e7845289634a2322b2ab9fe85d57e7dd51b685e51e6fc962bb511bb8cd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870783002064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-e5c8f7e7845289634a2322b2ab9fe85d57e7dd51b685e51e6fc962bb511bb8cd3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9879287 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.482424 |
| Snippet | Deep learning models are known to suffer from the problem of catastrophic forgetting when they incrementally learn new classes. Continual learning for semantic... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 16845 |
| SubjectTerms | Computational modeling Computer vision Deep learning grouping and shape analysis; Vision applications and systems Machine vision Representation learning Scene analysis and understanding; Computer vision theory; Deep learning architectures and techniques; Efficient learning and inferences; Representation learning; Segmentation Semantics Shape |
| Title | Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation |
| URI | https://ieeexplore.ieee.org/document/9879287 |
| WOSCitedRecordID | wos000870783002064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQMTHy3iWx4YSds4dmzPhQoJVFW0lG5V7VxQJJqifvD7OSehMLCwWYmlSHey_N7l3juAG6kEOiFkYLi1gRBWB5qjCZxxc25SzV1Ryp48qcFAT6dmWIPbnRYGEYvmM2z7ZfEvP1m6rS-VdYgfG0L4dagrpUqt1q6eEhGTiY2u1HFh13R6k-GzNzPxDVyctwnbeB_mXzNUiiukf_C_jx9C60eLx4a7W-YIapgfw0EFHll1NNdNGBfjLdkoW2REVglbs9ei6kmbHr_rZuzOn-j3sv2NEVxl3pwq866kbIQLCnLmaPG2qARJeQte-vfj3kNQjUwIMt6NNgFKp1OFSgtJTCqOxJwQE7d8bk2KWiaS3iWJDG2sJcoQ49SZmLJEsMta7ZLoBBr5MsdTYDZ0jhMhROUiETmpaT-hK2mNxm7C5Rk0fZBmH6UrxqyKz_nfjy9g32ehbLK6hMZmtcUr2HOfm2y9ui5S-QW8tqDQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmugJFYzf7sGjBbrdbXfPKMGAhAgiN8Jup6aJgOHD3-9sqejBi7dNu0mTmWz2vem8NwC3MhJohZCe5sZ4QhjlKY7as9pOuE4Ut1kpe9iJul01GuleAe62WhhEzJrPsOqW2b_8eG7XrlRWI36sCeHvwK4Ugvsbtda2ohIQlwm1yvVxfl3XGsPes7MzcS1cnFcJ3Tgn5l9TVLJLpFn63-cPofKjxmO97T1zBAWcHUMph48sP5zLMgyyAZesn05ToquErtlrVvekTe3vyhm7d2f6fdMAxwiwMmdPlTpfUtbHKYU5tbR4m-aSpFkFXpoPg0bLy4cmeCmvBysPpVVJhJESkrhUGIgJYSZu-MToBJWMJb2LY-mbUEmUPoaJ1SHliYCXMcrGwQkUZ_MZngIzvrWcKCFGNhCBlYr2E76SRiusx1yeQdkFafyx8cUY5_E5__vxDey3Bk-dceex276AA5eRTcvVJRRXizVewZ79XKXLxXWW1i9H1qQX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Class+Similarity+Weighted+Knowledge+Distillation+for+Continual+Semantic+Segmentation&rft.au=Phan%2C+Minh+Hieu&rft.au=Ta%2C+The-Anh&rft.au=Phung%2C+Son+Lam&rft.au=Tran-Thanh%2C+Long&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=16845&rft.epage=16854&rft_id=info:doi/10.1109%2FCVPR52688.2022.01636&rft.externalDocID=9879287 |