Admm-Based Fast Algorithm for Robust Multi-Group Multicast Beamforming

We consider robust multi-group multicast beamforming design in massive multiple-input multiple-output (MIMO) large-scale systems. The goal is to minimize the transmit power subject to the minimum signal-to-interference-plus-noise-ratio (SINR) targets under channel uncertainty. Using the exact worst-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 4440 - 4444
Hlavní autoři: Mohamadi, Niloofar, Dong, Min, ShahbazPanahi, Shahram
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 06.06.2021
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider robust multi-group multicast beamforming design in massive multiple-input multiple-output (MIMO) large-scale systems. The goal is to minimize the transmit power subject to the minimum signal-to-interference-plus-noise-ratio (SINR) targets under channel uncertainty. Using the exact worst-case SINR constraints, we transform the problem into a non-convex optimization problem. We develop an alternating direction method of multipliers (ADMM)based fast algorithm to solve this problem directly with convergence guarantee. Our two-layer ADMM-based algorithm decomposes the non-convex problem into a sequence of convex subproblems, for which we obtain the semi-closed-form or closed-form solutions. Simulation studies show that our algorithm provides a considerable computational advantage over the conventional interior-point method non-convex solver with nearly identical performance.
ISSN:2379-190X
DOI:10.1109/ICASSP39728.2021.9413651