Symbolic-Numeric Computation of Posterior Mean and Variance for a Class of Discrete-Time Nonlinear Stochastic Systems

This paper proposes a symbolic-numeric Bayesian filtering method for a certain class of discrete-time nonlinear stochastic systems. The prior distribution and the predictive distribution of the output can be non-Gaussian, while the posterior distribution is approximated by a Gaussian distribution. T...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE Conference on Decision & Control pp. 4814 - 4821
Main Authors: Iori, Tomoyuki, Ohtsuka, Toshiyuki
Format: Conference Proceeding
Language:English
Published: IEEE 14.12.2020
Subjects:
ISSN:2576-2370
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a symbolic-numeric Bayesian filtering method for a certain class of discrete-time nonlinear stochastic systems. The prior distribution and the predictive distribution of the output can be non-Gaussian, while the posterior distribution is approximated by a Gaussian distribution. The mean and variance of the posterior distribution are then regarded as functions of the mean and variance at a previous time step, a known input, and an observed output. A set of linear partial differential equations (PDEs) satisfied by these functions is computed by using algorithms for ideals in rings of differential operators offline, and then the set of linear PDEs is numerically solved online to obtain the mean and variance of the current posterior distribution. A numerical example is provided to show the efficiency of the proposed method.
AbstractList This paper proposes a symbolic-numeric Bayesian filtering method for a certain class of discrete-time nonlinear stochastic systems. The prior distribution and the predictive distribution of the output can be non-Gaussian, while the posterior distribution is approximated by a Gaussian distribution. The mean and variance of the posterior distribution are then regarded as functions of the mean and variance at a previous time step, a known input, and an observed output. A set of linear partial differential equations (PDEs) satisfied by these functions is computed by using algorithms for ideals in rings of differential operators offline, and then the set of linear PDEs is numerically solved online to obtain the mean and variance of the current posterior distribution. A numerical example is provided to show the efficiency of the proposed method.
Author Iori, Tomoyuki
Ohtsuka, Toshiyuki
Author_xml – sequence: 1
  givenname: Tomoyuki
  surname: Iori
  fullname: Iori, Tomoyuki
  email: iori@sys.i.kyoto-u.ac.jp
  organization: Kyoto University,Graduate School of Informatics,Department of Systems Science,Kyoto,Japan,606–8501
– sequence: 2
  givenname: Toshiyuki
  surname: Ohtsuka
  fullname: Ohtsuka, Toshiyuki
  email: ohtsuka@i.kyoto-u.ac.jp
  organization: Kyoto University,Graduate School of Informatics,Department of Systems Science,Kyoto,Japan,606–8501
BookMark eNotkN1KwzAcxaMouE6fQIS8QGe-2jSX0vkFcwqb3o40_QcjbTKS7GJvb8XdnAOHww_OKdCFDx4QuqNkQSlR9-2yFYwLsmCEkYXiRFDJzlAxaUOlEJKfoxmrZF0yLskVKlL6IYQrJfgMHTbHsQuDM-X6MEJ0Brdh3B-yzi54HCz-CClPeYj4DbTH2vf4S0envQFsp1TjdtAp_VWXLpkIGcqtGwGvgx-cBx3xJgfzrVOe4JvjRBvTNbq0ekhwc_I5-nx63LYv5er9-bV9WJWOEZ7LXimtpz29tU3fNVIaIRQwU7OqZj1tqk6CotAJawgDa_qmo12luAJTE24Zn6Pbf64DgN0-ulHH4-50Ef8FCXJfGg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CDC42340.2020.9304172
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728174473
9781728174471
EISSN 2576-2370
EndPage 4821
ExternalDocumentID 9304172
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-d99aa304dff8db877c449e2c62562d185b7e91eb4fc02efcd8b1b5939ec603f23
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717663403134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 06:03:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d99aa304dff8db877c449e2c62562d185b7e91eb4fc02efcd8b1b5939ec603f23
PageCount 8
ParticipantIDs ieee_primary_9304172
PublicationCentury 2000
PublicationDate 2020-Dec.-14
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE Conference on Decision & Control
PublicationTitleAbbrev CDC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039943
Score 1.757182
Snippet This paper proposes a symbolic-numeric Bayesian filtering method for a certain class of discrete-time nonlinear stochastic systems. The prior distribution and...
SourceID ieee
SourceType Publisher
StartPage 4814
SubjectTerms Bayes methods
Gaussian distribution
Handheld computers
Nonlinear systems
Probability density function
Taylor series
Upper bound
Title Symbolic-Numeric Computation of Posterior Mean and Variance for a Class of Discrete-Time Nonlinear Stochastic Systems
URI https://ieeexplore.ieee.org/document/9304172
WOSCitedRecordID wos000717663403134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQALjxbxlgdG3DqP1vHcUjFAVKmAulV-nEUHEhQSJP495yQUkFjYIsuWlTvJ351933eEXGkM8ZXgnDnBNYsjJ5gG68t2TBCBCZRLaqLwnUjTZLmU8w653nBhAKAuPoOB_6zf8m1uKn9VNpSYeyPgbpEtIcYNV-vr1EWcjaOWoRNwOZxMJxgoxBwzwJAP2oW_OqjUADLb-9_W-6T_zcSj8w3GHJAOZIdk94eIYI9Ui48X7dV9WVrVzy-06dRQm5zmjvp-vDieF_QeVEZVZukTZsje3RRDVqpo3RnTT52u8RTBMJp5ZghNGxkNVdBFmZtn5SWdaStx3iePs5uHyS1rmymwdcijklkplcKfsM4lVidCmDiWEBrMf8ahRdTWAmQAOnaGh-CMTXSgRzKSYMY8cmF0RLpZnsExoVKGSiCu6ZHB6ZBorSASaLIwButMcEJ63oCr10YvY9Xa7vTv4TOy433kS0SC-Jx0y6KCC7Jt3sv1W3FZO_kTfn-rkA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CurFRxXf5uDRtdls2mzO1VKxXQqt4q3kMcEe3JXaCv57J9v1BV68LSEh7Azkm0nm-4aQC4MhvpaMRV4yE4nEy8iAC2U7Nk7AxtqnJVG4L7MsfXxUwxq5_OLCAEBZfAZX4bN8y3eFXYSrsqbC3BsBd4WstoTgbMnW-jx3EWlFUnF0YqaanesOhgqCYQ7I2VW19FcPlRJCulv_23yb7H1z8ejwC2V2SA3yXbL5Q0awQRaj92cT9H2jbFE-wNBlr4bS6LTwNHTkxfFiRgegc6pzRx8wRw4Opxi0Uk3L3phh6vUUzxEMpKPADaHZUkhDz-hoXtgnHUSdaSVyvkfuuzfjTi-q2ilEU86SeeSU0hp_wnmfOpNKaYVQwC1mQG3uELeNBBWDEd4yDt661MSmpRIFts0Sz5N9Us-LHA4IVYprichmWhanQ2qMhkSiybgA5218SBrBgJOXpWLGpLLd0d_D52S9Nx70J_3b7O6YbAR_hYKRWJyQ-ny2gFOyZt_m09fZWenwD5S_rtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+Conference+on+Decision+%26+Control&rft.atitle=Symbolic-Numeric+Computation+of+Posterior+Mean+and+Variance+for+a+Class+of+Discrete-Time+Nonlinear+Stochastic+Systems&rft.au=Iori%2C+Tomoyuki&rft.au=Ohtsuka%2C+Toshiyuki&rft.date=2020-12-14&rft.pub=IEEE&rft.eissn=2576-2370&rft.spage=4814&rft.epage=4821&rft_id=info:doi/10.1109%2FCDC42340.2020.9304172&rft.externalDocID=9304172