Encoding Adaptability of Software Engineering Tools as Algorithm Configuration Problem: A Case Study

Nowadays software is often highly configurable, and the required adaptation is a complex and tedious task when performed manually. Moreover, hand-crafted configurations are often far from optimal. In this paper, we study the software configuration problem in the context of the model comparison tool...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW) s. 86 - 89
Hlavní autoři: Basmer, Maike, Kehrer, Timo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nowadays software is often highly configurable, and the required adaptation is a complex and tedious task when performed manually. Moreover, hand-crafted configurations are often far from optimal. In this paper, we study the software configuration problem in the context of the model comparison tool SiDiff, which needs to be carefully adapted to domain-specific modeling languages used in model-driven engineering. To tackle the configuration challenge, we propose to draw from the field of automated algorithm configuration, a research area which has studied the optimization of parameterizable algorithms for many years and which has gained particular momentum through its applications to hyper-parameter tuning in machine learning. Specifically, we report on ongoing work encoding the adaptability of SiDiff as an algorithm configuration problem which is amenable to a sequential model-based optimization tool known as SMAC. While empirical evaluation results are left for future work, the main goal of this paper is to foster active discussions at the workshop and to collect early feedback on our ongoing research.
AbstractList Nowadays software is often highly configurable, and the required adaptation is a complex and tedious task when performed manually. Moreover, hand-crafted configurations are often far from optimal. In this paper, we study the software configuration problem in the context of the model comparison tool SiDiff, which needs to be carefully adapted to domain-specific modeling languages used in model-driven engineering. To tackle the configuration challenge, we propose to draw from the field of automated algorithm configuration, a research area which has studied the optimization of parameterizable algorithms for many years and which has gained particular momentum through its applications to hyper-parameter tuning in machine learning. Specifically, we report on ongoing work encoding the adaptability of SiDiff as an algorithm configuration problem which is amenable to a sequential model-based optimization tool known as SMAC. While empirical evaluation results are left for future work, the main goal of this paper is to foster active discussions at the workshop and to collect early feedback on our ongoing research.
Author Kehrer, Timo
Basmer, Maike
Author_xml – sequence: 1
  givenname: Maike
  surname: Basmer
  fullname: Basmer, Maike
  organization: Humboldt-Universität zu Berlin
– sequence: 2
  givenname: Timo
  surname: Kehrer
  fullname: Kehrer, Timo
  organization: Humboldt-Universität zu Berlin
BookMark eNotzMtKxDAUgOEIutBx1i7c5AU65qSXpO5KqRcYUOiIyyFpTmqgTYY0g_TtRXT1bz7-G3Lpg0dC7oDtAFj90PTd544zqHeMsby8INtaSBBcQgF5Ja6J6fwQjPMjbYw6JaXd5NJKg6V9sOlbRaSdH51HjL_oEMK0ULXQZhpDdOlrpm3w1o3nqJILnr7HoCecH2lDW7Ug7dPZrLfkyqppwe1_N-TjqTu0L9n-7fm1bfaZ4yxPmZGshEHUYECbQdXKgCy51YXkaHHQgrNBCCU4lJUVKEDrkhvDqkIqCdLmG3L_93WIeDxFN6u4HmVdiQJE_gMb7FN8
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASEW.2019.00035
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728141367
1728141362
EndPage 89
ExternalDocumentID 8967417
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-d8051c791d1bdca9ad1852fb482efecb720c77a72156f7e71bb52dd0648a818f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568203400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 06 17:53:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d8051c791d1bdca9ad1852fb482efecb720c77a72156f7e71bb52dd0648a818f3
PageCount 4
ParticipantIDs ieee_primary_8967417
PublicationCentury 2000
PublicationDate 2019-Nov
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov
PublicationDecade 2010
PublicationTitle 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)
PublicationTitleAbbrev ASEW
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7109917
Snippet Nowadays software is often highly configurable, and the required adaptation is a complex and tedious task when performed manually. Moreover, hand-crafted...
SourceID ieee
SourceType Publisher
StartPage 86
SubjectTerms adaptability
Adaptation models
automated algorithm configuration
Conferences
Context modeling
Encoding
Machine learning algorithms
Optimization
SiDiff
SMAC
Software
Software algorithms
Software engineering
Software engineering tools
Tuning
Title Encoding Adaptability of Software Engineering Tools as Algorithm Configuration Problem: A Case Study
URI https://ieeexplore.ieee.org/document/8967417
WOSCitedRecordID wos000568203400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2AePCkBozf6cGjle6yy3S9bQjEgyEkYORG-jGLJLglsGj497a7RDl48db20Ek6aV-nnfeGkPuuEsboTsQyrgyLQAFT7hBksYpASgMykqXO7AsMh2I6TUY18vDDhUHEMvkMH32z_Ms3Vm_9U1lbJF0HgFAndQCouFp7tZ6AJ-103H_zuVpegJL78m0H5VJKtBic_M_OKWn90u7o6AdQzkgN8yYx_Vxb36epkauiktXeUZvRsTtBv-Qa6YGmIJ1Yu9xQuaHpcm5d4P_-Qf3si_m2crU34CvIPNGU9hyCUZ9IuGuR10F_0ntm-9IIbBHyTsGMcJtJQxKYQBktE2k8CTpTkQgxQ60g5BpAuvAu7maAECgVh8a4-4eQDqKzzjlp5DbHC0IVGgicI91FUEZCYSKBQ6jjEGUSc64vSdOv0GxVqV_M9otz9ffwNTn2LqjYejekUay3eEuO9Gex2KzvSpd9A1NEnI0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cGjK92ly-x62xAIRiQkYORG-rVIgrsEFg3_3naXIAcv3toeOkkn7eu0894A3DdEoJSsMyemQjkMBTrCHIKOLxhyrpAznuvMdrHXC0ajsF-Chy0XRmudJ5_pR9vM__JVKlf2qawWhA0DgLgH-z5jnluwtTZ6PS4Na9Gg9W6ztawEJbUF3HYKpuR40T7-n6UTqP4S70h_CymnUNJJBVQrkantk0jxeVYIa69JGpOBOUO_-UKTHVVBMkzT2ZLwJYlmk9SE_h-fxM4-nawKZ1sDtobME4lI02AYsamE6yq8tVvDZsfZFEdwph6tZ44KzHaSGLrKFUrykCtLg44FCzwdaynQoxKRmwDPb8So0RXC95QyN5CAG5CO62dQTtJEnwMRWqFrXGmugpwFQoccKXrS9zQPfUrlBVTsCo3nhf7FeLM4l38P38FhZ_jaHXefey9XcGTdUXD3rqGcLVb6Bg7kVzZdLm5z9_0Ao7-f1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+34th+IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+Workshop+%28ASEW%29&rft.atitle=Encoding+Adaptability+of+Software+Engineering+Tools+as+Algorithm+Configuration+Problem%3A+A+Case+Study&rft.au=Basmer%2C+Maike&rft.au=Kehrer%2C+Timo&rft.date=2019-11-01&rft.pub=IEEE&rft.spage=86&rft.epage=89&rft_id=info:doi/10.1109%2FASEW.2019.00035&rft.externalDocID=8967417