F0-Consistent Many-To-Many Non-Parallel Voice Conversion Via Conditional Autoencoder

Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AU-TOVC, a conditional autoencoders (CAEs) b...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 6284 - 6288
Main Authors: Qian, Kaizhi, Jin, Zeyu, Hasegawa-Johnson, Mark, Mysore, Gautham J.
Format: Conference Proceeding
Language:English
Published: IEEE 01.05.2020
Subjects:
ISSN:2379-190X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AU-TOVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speaker's identity embedding to synthesize a new voice. However, we found that while speaker identity is disentangled from speech content, a significant amount of prosodic information, such as source F0, leaks through the bottleneck, causing target F0 to fluctuate unnaturally. Furthermore, AutoVC has no control of the converted F0 and thus unsuitable for many applications. In the paper, we modified and improved autoencoder-based voice conversion to disentangle content, F0, and speaker identity at the same time. Therefore, we can control the F0 contour, generate speech with F0 consistent with the target speaker, and significantly improve quality and similarity. We support our improvement through quantitative and qualitative analysis.
AbstractList Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AU-TOVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speaker's identity embedding to synthesize a new voice. However, we found that while speaker identity is disentangled from speech content, a significant amount of prosodic information, such as source F0, leaks through the bottleneck, causing target F0 to fluctuate unnaturally. Furthermore, AutoVC has no control of the converted F0 and thus unsuitable for many applications. In the paper, we modified and improved autoencoder-based voice conversion to disentangle content, F0, and speaker identity at the same time. Therefore, we can control the F0 contour, generate speech with F0 consistent with the target speaker, and significantly improve quality and similarity. We support our improvement through quantitative and qualitative analysis.
Author Hasegawa-Johnson, Mark
Jin, Zeyu
Mysore, Gautham J.
Qian, Kaizhi
Author_xml – sequence: 1
  givenname: Kaizhi
  surname: Qian
  fullname: Qian, Kaizhi
  organization: University of Illinois at Urbana-Champaign,IL,USA
– sequence: 2
  givenname: Zeyu
  surname: Jin
  fullname: Jin, Zeyu
  organization: Adobe Research,CA,USA
– sequence: 3
  givenname: Mark
  surname: Hasegawa-Johnson
  fullname: Hasegawa-Johnson, Mark
  organization: University of Illinois at Urbana-Champaign,IL,USA
– sequence: 4
  givenname: Gautham J.
  surname: Mysore
  fullname: Mysore, Gautham J.
  organization: Adobe Research,CA,USA
BookMark eNotkF1LwzAYhaMouM39Am_yBzLffDRpLsdwKkwdrA7vRtq8gUhNpK3C_r0d7urhgcPhcKbkKuWEhFAOC87B3j-vlrvdVoExeiFAwMJCoYxUF2RuTckLsKC15MUlmQhpLOMWPm7ItO8_AaA0qpyQag1slVMf-wHTQF9cOrIqsxPpa05s6zrXttjSfY4N0jH6i10fc6L76E7q4zCaa-nyZ8iYmuyxuyXXwbU9zs-ckff1Q7V6Ypu3x3HzhkUBcmBeh9o7JwBRO1ProJW2HoIRSjSKWw11CKCFDJaHwvta1BB04I0OFoPRckbu_nsjIh6-u_jluuPhfIL8A6PBVKo
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP40776.2020.9054734
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509066315
1509066314
EISSN 2379-190X
EndPage 6288
ExternalDocumentID 9054734
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-d6fbdaa20ee6a7b6f6469d0f7242c41960bff0623f91f5ddb2b0f6f1c6f9ef763
IEDL.DBID RIE
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615970406109&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d6fbdaa20ee6a7b6f6469d0f7242c41960bff0623f91f5ddb2b0f6f1c6f9ef763
PageCount 5
ParticipantIDs ieee_primary_9054734
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.5043507
Snippet Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as...
SourceID ieee
SourceType Publisher
StartPage 6284
SubjectTerms Acoustics
autoencoder
Conferences
F0-conversion
Generative adversarial networks
Signal processing
Speech processing
Task analysis
Tuning
voice-conversion
WaveNet-vocoder
Title F0-Consistent Many-To-Many Non-Parallel Voice Conversion Via Conditional Autoencoder
URI https://ieeexplore.ieee.org/document/9054734
WOSCitedRecordID wos000615970406109&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZt2WG77NGOvfFhx7m1M8dJjqWsbIeVQLvSW3FsCwIjGVm63z876boNdtnJsSEEJCRZivR9ALcqMS6uR4py5IYKkXCqQuRUm9ClYoHQ3MQN2UQ0m8WrVZJ24G43C2OtbZrP7NA_Nv_yTak3vlQ2SphnyhVd6EaRbGe1dl43jkT81anDktHTZDyfp8KD1bgkMGDD7bu_SFSaGDI9_N_Xj2DwPYxH0l2YOYaOLU7g4AeOYB8WU0Yb5k2nsqImz87A6aKkfiWzsqCpqjxlyitZls4vkInvNG_KZGSZK781eVsSJONNXXpoS2OrAbxMHxaTR7qlS6B5wO5raiRmRqmAWStVlEmULvU1DJ3EAy2cpbEMkbnrDiYcQ2OyIGMokWuJiUXnZ06hV5SFPQOilI61u7upiCvhRJgxFQoTerg0xEyG59D38lm_tYgY661oLv4-voR9r4K2TfAKenW1sdewpz_q_L26adT4CR3Gnvo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSLj1Z8uwePbrsbN69jKZYW2xBoLL2VzT4gIInE1N_vblKrghdPm10IgRlmZmcy830A9zyUJq77HFNNJWYspJi7mmIhXZOKOUxQGdRkE34UBctlGLfgYTsLo5Sqm89Uzz7W__JlIda2VNYPiWXKZTuw6zLmkGZaa-t3A58FX706JOxPhoP5PGYWrsakgQ7pbd7-RaNSR5HR0f--fwzd73E8FG8DzQm0VH4Khz-QBDuQjAiuuTeN0vIKzYyJ46TAdkVRkeOYl5Y05RUtCuMZ0ND2mteFMrTIuN3KrCkKosG6Kiy4pVRlF15GT8lwjDeECThzyGOFpadTyblDlPK4n3raM8mvJNrI3BHM2BpJtSbmwqNDql0pUycl2tNUeDpU2niaM2jnRa7OAXEuAmFub9ynnBkRpoS7TLoWME3r1HMvoGPls3prMDFWG9Fc_n18B_vjZDZdTSfR8xUcWHU0TYPX0K7KtbqBPfFRZe_lba3ST5FJokE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=F0-Consistent+Many-To-Many+Non-Parallel+Voice+Conversion+Via+Conditional+Autoencoder&rft.au=Qian%2C+Kaizhi&rft.au=Jin%2C+Zeyu&rft.au=Hasegawa-Johnson%2C+Mark&rft.au=Mysore%2C+Gautham+J.&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=6284&rft.epage=6288&rft_id=info:doi/10.1109%2FICASSP40776.2020.9054734&rft.externalDocID=9054734