A Recursive Prediction Error Method with Effective Use of Gradient-Functions to Adapt PMSM-Parameters Online

This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conference record of the Industry Applications Conference S. 1 - 5
Hauptverfasser: Perera, Aravinda, Nilsen, Roy
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 10.10.2020
Schlagworte:
ISSN:2576-702X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -states are exploited for this purpose. The RPEM has been computed using the stochastic gradient algorithm (SGA). The scalar Hessian matrix, r[k] appearing in the algorithm has been analyzed for both its steady and dynamic states. Different combinations of Ψ T and r[k] -states have been simulated and compared with respect to performance when used for parameter adaptation.
AbstractList This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive prediction error method (RPEM). The parameter-sensitivity functions (herein known as the gradient functions, Ψ T ) both in dynamic and steady -states are exploited for this purpose. The RPEM has been computed using the stochastic gradient algorithm (SGA). The scalar Hessian matrix, r[k] appearing in the algorithm has been analyzed for both its steady and dynamic states. Different combinations of Ψ T and r[k] -states have been simulated and compared with respect to performance when used for parameter adaptation.
Author Perera, Aravinda
Nilsen, Roy
Author_xml – sequence: 1
  givenname: Aravinda
  surname: Perera
  fullname: Perera, Aravinda
  email: aravinda.perera@ntnu.no
  organization: Norwegian University of Science and Technology,Department of Electric Power Engineering,Trondheim,Norway
– sequence: 2
  givenname: Roy
  surname: Nilsen
  fullname: Nilsen, Roy
  email: roy.nilsen@ntnu.no
  organization: Norwegian University of Science and Technology,Department of Electric Power Engineering,Trondheim,Norway
BookMark eNotUN1qwjAYzcYGU-cTjEFeoC4_bZNcFlEnWJQ5YXeSNl8wQ1NJ4sbefmXz4nDg_HzwnSG6850HhJ4pmVBK1Muy2ua5EnLCCCMTxXku8vwGjXuJCtaDKkZu0YAVoswEYR8PaBjjJyGEy5IO0LHCb9BeQnRfgDcBjGuT6zyehdAFXEM6dAZ_u3TAM2uh9_rYLgLuLF4EbRz4lM0v_q8UcepwZfQ54U29rbONDvoECULEa390Hh7RvdXHCOMrj9BuPnufvmar9WI5rVaZY4SnzBQgCl1IaiiDFphVTalt0UhZatPmIPrfGtFrUgkjtbaNFlxxQoyRTQsFH6Gn_7sOAPbn4E46_Oyv4_BfCVlcnA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IAS44978.2020.9334744
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728171920
172817192X
EISSN 2576-702X
EndPage 5
ExternalDocumentID 9334744
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIO
RNS
ID FETCH-LOGICAL-i203t-d5e75a581d12ece2f9b6af5b886adc4e7781b7b6a897d8aafba739300dd8bce53
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680413800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 05:52:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d5e75a581d12ece2f9b6af5b886adc4e7781b7b6a897d8aafba739300dd8bce53
PageCount 5
ParticipantIDs ieee_primary_9334744
PublicationCentury 2000
PublicationDate 2020-Oct.-10
PublicationDateYYYYMMDD 2020-10-10
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle Conference record of the Industry Applications Conference
PublicationTitleAbbrev IAS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003861
Score 2.1572845
Snippet This paper proposes a method for online estimation of electrical parameters of interior permanent magnet synchronous machines (IPMSM) based on the recursive...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Convergence
Gain-sequence
gradient function
Hessian
Heuristic algorithms
magnet flux linkage
online identification
Permanent magnet machines
permanent magnet synchronous machine
Permanent magnets
Prediction algorithms
recursive prediction error algorithm
sensitivity analysis
Steady-state
stochastic gradient
Torque
Title A Recursive Prediction Error Method with Effective Use of Gradient-Functions to Adapt PMSM-Parameters Online
URI https://ieeexplore.ieee.org/document/9334744
WOSCitedRecordID wos000680413800036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCLj1Z8k4NH02azySZ7LNKqh5ZiLfRW8piFgnTLduvvN9ldqoIXb2FICExC5pGZ70PowUhjXcyBZBlLCIeMEp04S5SNGOXGpZDUZBNyMlGLRTptocd9LwwAVMVn0AvD6i_f5XYXUmV9H3xzyfkBOpAyqXu19q9urJKo6dCJaNp_Hcx4IE_zESCjvWbhLwaVyoCMTv639Snqfnfi4enexpyhFqzP0fEPEMEO-hjgt5A0D3Xofm74eAnKxsOiyAs8rhiicUi34hqpOEybbwHnGX4uqoKvkoy8dasuIC5zPHB6U-LpeDYmUx1qtwIAJ64xSbtoPhq-P72QhkOBrBiNS-IESKGF90ojBhZYlppEZ8IolWhnOUjp_VbpZSqVTmmdGR0w8ih1ThkLIr5A7XW-hkuEhbQu1dwHhIbx2JlUMxFzS5WmQgNzV6gT9Lbc1DAZy0Zl13-Lb9BROJpgBiJ6i9plsYM7dGg_y9W2uK_O9gt6-6fP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CurFRxXf5uDR2Gw22WSPRVpbbEtRC95KHrNQkG7Zbv39bnaXquDFWxgSApOQeWTm-xC6M9JYF3IgScIiwiGhREfOEmUDRrlxMUQV2YQcj9X7ezxpoPtNLwwAlMVn8OCH5V--S-3ap8raRfDNJedbaFtwzmjVrbV5d0MVBXWPTkDj9qDzyj19WhEDMvpQL_3FoVKakN7B_zY_RCffvXh4srEyR6gBi2O0_wNGsIU-OvjFp819JXox13-9eHXjbpalGR6VHNHYJ1xxhVXsp01XgNMEP2VlyVdOeoV9K68gzlPccXqZ48nodUQm2ldveQhOXKGSnqBpr_v22Cc1iwKZMxrmxAmQQovCLw0YWGBJbCKdCKNUpJ3lIGXhucpCpmLplNaJ0R4lj1LnlLEgwlPUXKQLOENYSOtizYuQ0DAeOhNrJkJuqdJUaGDuHLW83mbLCihjVqvs4m_xLdrtv42Gs-Fg_HyJ9vwxeaMQ0CvUzLM1XKMd-5nPV9lNec5fYjCrFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=A+Recursive+Prediction+Error+Method+with+Effective+Use+of+Gradient-Functions+to+Adapt+PMSM-Parameters+Online&rft.au=Perera%2C+Aravinda&rft.au=Nilsen%2C+Roy&rft.date=2020-10-10&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIAS44978.2020.9334744&rft.externalDocID=9334744