Video K-Net: A Simple, Strong, and Unified Baseline for Video Segmentation
This paper presents Video K-Net, a simple, strong, and unified framework for fully end-to-end video panoptic seg-mentation. The method is built upon K-Net, a method that unifies image segmentation via a group of learnable ker-nels. We observe that these learnable kernels from K-Net, which encode obj...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 18825 - 18835 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2022
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents Video K-Net, a simple, strong, and unified framework for fully end-to-end video panoptic seg-mentation. The method is built upon K-Net, a method that unifies image segmentation via a group of learnable ker-nels. We observe that these learnable kernels from K-Net, which encode object appearances and contexts, can naturally associate identical instances across video frames. Motivated by this observation, Video K-Net learns to simultaneously segment and track "things" and "stuff" in a video with simple kernel-based appearance modeling and cross-temporal kernel interaction. Despite the simplicity, it achieves state-of-the-art video panoptic segmentation results on Citscapes-VPS and KITTI-STEP without bells and whistles. In particular on KITTI-STEP, the simple method can boost almost 12% relative improvements over previous methods. We also validate its generalization on video semantic segmentation, where we boost various baselines by 2% on the VSPW dataset. Moreover, we extend K-Net into clip-level video framework for video instance segmentation where we obtain 40.5% for ResNet50 backbone and 51.5% mAP for Swin-base on YouTube-2019 validation set. We hope this simple yet effective method can serve as a new flexible baseline in video segmentation. 1 1 Both code and models are released at here. |
|---|---|
| ISSN: | 1063-6919 |
| DOI: | 10.1109/CVPR52688.2022.01828 |