Hybrid Simulated Annealing and Genetic Algorithm for Optimization of a Rule-based Algorithm for Detection of Gait Events in Impaired Subjects

Accurate identification of gait phases is a necessary step for control of robotic devices during gait therapy or automatic diagnosis of gait impairments. Most of the existing algorithms use a rule-based approach that takes advantage of the consistency of the gait cycle among healthy subjects. Since...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ASME International Conference on Advanced Intelligent Mechatronics s. 1167 - 1171
Hlavní autori: Perez-Ibarra, Juan C., Siqueira, Adriano A. G., Terra, Marco H., Krebs, Hermano I.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2020
Predmet:
ISSN:2159-6255
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate identification of gait phases is a necessary step for control of robotic devices during gait therapy or automatic diagnosis of gait impairments. Most of the existing algorithms use a rule-based approach that takes advantage of the consistency of the gait cycle among healthy subjects. Since impaired gait patterns lack of that inter-subject consistency, most of those algorithms have limited performance when detecting phases in impaired subjects. In this paper, we propose a new algorithm for real-time detection of four gait events (heel-strike, toe-strike, heel-off and toe-off). The proposed algorithm uses a set of threshold-based rules and to compute the adequate values for the thresholds, maximizing the performance of the algorithm, we use a hybrid meta-heuristic approach that integrates Simulated Annealing and a Genetic Algorithm. Using data collected during overground and treadmill walking trials with a wearable device equipped with an inertial sensor, we report experimental results for three subjects: one healthy, one hemiparetic, and one myelopathic. F 1 -scores for the three subjects were 0.98, 0.99, and 0.91, respectively.
AbstractList Accurate identification of gait phases is a necessary step for control of robotic devices during gait therapy or automatic diagnosis of gait impairments. Most of the existing algorithms use a rule-based approach that takes advantage of the consistency of the gait cycle among healthy subjects. Since impaired gait patterns lack of that inter-subject consistency, most of those algorithms have limited performance when detecting phases in impaired subjects. In this paper, we propose a new algorithm for real-time detection of four gait events (heel-strike, toe-strike, heel-off and toe-off). The proposed algorithm uses a set of threshold-based rules and to compute the adequate values for the thresholds, maximizing the performance of the algorithm, we use a hybrid meta-heuristic approach that integrates Simulated Annealing and a Genetic Algorithm. Using data collected during overground and treadmill walking trials with a wearable device equipped with an inertial sensor, we report experimental results for three subjects: one healthy, one hemiparetic, and one myelopathic. F 1 -scores for the three subjects were 0.98, 0.99, and 0.91, respectively.
Author Siqueira, Adriano A. G.
Krebs, Hermano I.
Perez-Ibarra, Juan C.
Terra, Marco H.
Author_xml – sequence: 1
  givenname: Juan C.
  surname: Perez-Ibarra
  fullname: Perez-Ibarra, Juan C.
  organization: University of São Paulo,Departments of Mechanical Engineering and Electrical Engineering,São Carlos,Brazil
– sequence: 2
  givenname: Adriano A. G.
  surname: Siqueira
  fullname: Siqueira, Adriano A. G.
  organization: University of São Paulo,Dept. of Mechanical Engineering,São Carlos,Brazil
– sequence: 3
  givenname: Marco H.
  surname: Terra
  fullname: Terra, Marco H.
  organization: University of São Paulo,Department of Electrical Engineering,São Carlos,Brazil
– sequence: 4
  givenname: Hermano I.
  surname: Krebs
  fullname: Krebs, Hermano I.
  organization: Massachusetts Institute of Technology,Dept. of Mechanical Engineering,Cambridge,MA,USA
BookMark eNpVkNFOwjAYRqvRRESewJj0BYbtX7q2lwsikGhIRK9Jt_7Dkq0jWzHBd_CdnREvvPpuzjkX3zW5CE1AQu44G3POzH22fJ4IxvgYGLCx4VIboc_IyCjNFWieKjNR52QAXJokBSmvyKjrdqxXmJYAYkC-Fse89Y6ufX2obERHsxDQVj5sqQ2OzjFg9AXNqm3T-vhe07Jp6Woffe0_bfRNoE1JLX05VJjktvsJ_EMfMGLxx82tj3T2gSF21Ae6rPfWt72yPuS7nupuyGVpqw5Hpx2St8fZ63SRPK3my2n2lHhgIiZOGoUAubJYMivQcdTMMpZKk6cTzi2kZeF0nmoNjIMpDCjpoMiBI-8lMSS3v12PiJt962vbHjenA8U3-XRoQA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIM43001.2020.9158938
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728167947
1728167949
EISSN 2159-6255
EndPage 1171
ExternalDocumentID 9158938
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-d597e22b7aef0a3ed1e80a00659b6411a26fcd8b68820129c9275d2cb21e17ae3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612837600141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d597e22b7aef0a3ed1e80a00659b6411a26fcd8b68820129c9275d2cb21e17ae3
PageCount 5
ParticipantIDs ieee_primary_9158938
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle IEEE/ASME International Conference on Advanced Intelligent Mechatronics
PublicationTitleAbbrev AIM
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085223
Score 1.7479575
Snippet Accurate identification of gait phases is a necessary step for control of robotic devices during gait therapy or automatic diagnosis of gait impairments. Most...
SourceID ieee
SourceType Publisher
StartPage 1167
SubjectTerms Angular velocity
Artificial Intelligence
Foot
Gait Analysis
Genetic algorithms
Intelligent Sensors
Legged locomotion
Optimization
Performance evaluation
Protocols
Rehabilitation Robots
Wearable Sensors
Title Hybrid Simulated Annealing and Genetic Algorithm for Optimization of a Rule-based Algorithm for Detection of Gait Events in Impaired Subjects
URI https://ieeexplore.ieee.org/document/9158938
WOSCitedRecordID wos000612837600141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELXaigNcWFrELh84kjZx3MQ-VtDSHigVi9Rb5WUMkdoEtSkSH8E_Y6dRC4gLtyixZcm25r2ZzJtB6FJHjAZCRZ6kPPSoNOBxY5SnjGXHXDNGtV80m4iHQzYe81EFXa21MABQJJ9B0z0W__J1ppYuVNbiQdvCK6uiahxHK63WJp5iuYOFulKkE_i81Rnc0dB-sE4g8Zvl3B9NVAoM6e3-b_U91NiI8fBoDTP7qALpAdr5Vkewjj77H054hR-TmevGBRp3rPkUTmmORaqxqy1tLwjuTF-yeZK_zrClqvjeWotZKcPEmcECPyyn4Dlc07-G3kBepGwV425FkuOuy5Nc4CTFA2tQrN20qy-lC-osGui513267ntlnwUvIX6Ye9o6FUCIjAUYX4SgA2C-cOSEy4gGgSCRUZrJiDm6QLjiJG5roiQJILCTwkNUS7MUjhBmPjEh4VTG3HqObc3DUBsaUSUiI4HqY1R3Gzt5W5XSmJR7evL361O07c5ulR17hmr5fAnnaEu958liflGc_xcfD7NU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELXYJODCUhA7PnAkbeI4qX2sgNIKKBUUqbfKyxgitSlqEyQ-gn_GTqOyiAu3KLFlybbmvZnMm0HoTMeMBkLFnqQ89Kg04HFjlKeMZcdcM0a1XzSbqHc6rN_n3QV0PtfCAECRfAZV91j8y9djlbtQWY0HkYVXtoiWI0qJP1NrfUVULHuwYFfKdAKf1xrtOxraD9YNJH61nP2jjUqBIs2N_62_iXa-5Hi4OweaLbQA6TZa_1ZJsII-Wu9OeoUfk5HrxwUaN6wBFU5rjkWqsasuba8Ibgyfx5MkexlhS1bxvbUXo1KIiccGC_yQD8FzyKZ_Db2ErEjaKsZdiyTDVy5TcoqTFLetSbGW066eSxfWme6gp-ZV76LllZ0WvIT4YeZp61YAIbIuwPgiBB0A84WjJ1zGNAgEiY3STMbMEQbCFSf1SBMlSQCBnRTuoqV0nMIewswnJiScyjq3vmOkeRhqQ2OqRGwkUL2PKm5jB6-zYhqDck8P_n59ilZbvbvbwW27c3OI1tw5znJlj9BSNsnhGK2otyyZTk6Ku_AJnOC2mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FASME+International+Conference+on+Advanced+Intelligent+Mechatronics&rft.atitle=Hybrid+Simulated+Annealing+and+Genetic+Algorithm+for+Optimization+of+a+Rule-based+Algorithm+for+Detection+of+Gait+Events+in+Impaired+Subjects&rft.au=Perez-Ibarra%2C+Juan+C.&rft.au=Siqueira%2C+Adriano+A.+G.&rft.au=Terra%2C+Marco+H.&rft.au=Krebs%2C+Hermano+I.&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2159-6255&rft.spage=1167&rft.epage=1171&rft_id=info:doi/10.1109%2FAIM43001.2020.9158938&rft.externalDocID=9158938