Augmented Region-Growing-Based Motion Tracking Using Bayesian Inference For Quasi-Static Ultrasound Elastography
Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in evaluating motion tracking strategies for large deformation quasi-static elastography. In this study, Bayesian inference is incorporated into a region...
Gespeichert in:
| Veröffentlicht in: | Proceedings - International Conference on Image Processing S. 2960 - 2964 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2020
|
| Schlagworte: | |
| ISSN: | 2381-8549 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in evaluating motion tracking strategies for large deformation quasi-static elastography. In this study, Bayesian inference is incorporated into a region-growing motion estimation framework and we named the proposed tracking algorithm as a region-growing Bayesian motion tracking (RGBMT) algorithm. Basically, we replace signal correlation by a maximum posterior probability density function to perform motion tracking. Using a computer-simulated phantom and one set of human subject ultrasound data with pathologically-confirmed breast cancer, the proposed RGBMT algorithm was compared to the original region-growing motion tracking algorithm. Our preliminary data suggested that the addition of Bayesian inference is useful in terms of improving the accuracy of motion tracking. Results from both the numerical phantom and in vivo ultrasound data set showed that there are fewer tracking errors in axial displacement and strain images obtained from the proposed RGBMT algorithms. That explained why the contrast-to-noise (CNR) values were higher and the breast tumor on the reconstructed modulus image was better visualized. |
|---|---|
| AbstractList | Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in evaluating motion tracking strategies for large deformation quasi-static elastography. In this study, Bayesian inference is incorporated into a region-growing motion estimation framework and we named the proposed tracking algorithm as a region-growing Bayesian motion tracking (RGBMT) algorithm. Basically, we replace signal correlation by a maximum posterior probability density function to perform motion tracking. Using a computer-simulated phantom and one set of human subject ultrasound data with pathologically-confirmed breast cancer, the proposed RGBMT algorithm was compared to the original region-growing motion tracking algorithm. Our preliminary data suggested that the addition of Bayesian inference is useful in terms of improving the accuracy of motion tracking. Results from both the numerical phantom and in vivo ultrasound data set showed that there are fewer tracking errors in axial displacement and strain images obtained from the proposed RGBMT algorithms. That explained why the contrast-to-noise (CNR) values were higher and the breast tumor on the reconstructed modulus image was better visualized. |
| Author | Jiang, Jingfeng Yang, Tianlan He, Tingting Peng, Bo |
| Author_xml | – sequence: 1 givenname: Bo surname: Peng fullname: Peng, Bo organization: Southwest Petroleum University,School of Computer Science,Chengdu,Sichuan,China – sequence: 2 givenname: Tianlan surname: Yang fullname: Yang, Tianlan organization: Southwest Petroleum University,School of Computer Science,Chengdu,Sichuan,China – sequence: 3 givenname: Tingting surname: He fullname: He, Tingting organization: Southwest Petroleum University,School of Computer Science,Chengdu,Sichuan,China – sequence: 4 givenname: Jingfeng surname: Jiang fullname: Jiang, Jingfeng organization: Michigan Technological University,Department of Biomedical Engineering,Houghton,Michigan,USA |
| BookMark | eNotkNtqAjEYhNPSQtX6BIWSF1ibw7qbXKpUu2DpSa_l383vNq0mkkSKb98t9WYGPoZhmD65ct4hIfecjThn-qGaVa85K0s1EkywkeaaC11ckKEuFS-F4oXU4-KS9IRUPFPjXN-QfoxfrEtzyXvkMDm2e3QJDX3H1nqXLYL_sa7NphA7-OxTB-kqQPPdUbqOfzqFE0YLjlZuiwFdg3TuA307QrTZR4JkG7repQDRH52hjzuIybcBDp-nW3K9hV3E4dkHZD1_XM2esuXLoppNlpkVTKbMjFUBWpYqF4iiVoAoBd82sputBStMLkpe18YoruumURpkbWoGAo2WOYIckLv_XouIm0Owewinzfkg-QtXeF6U |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICIP40778.2020.9191296 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728163956 1728163951 |
| EISSN | 2381-8549 |
| EndPage | 2964 |
| ExternalDocumentID | 9191296 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-d586a937842ee2b8aee321fc30139206d4271bbdd819bcc89a3bdb0a2ed934ea3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000646178503014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:34:00 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-d586a937842ee2b8aee321fc30139206d4271bbdd819bcc89a3bdb0a2ed934ea3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9191296 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct. |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - International Conference on Image Processing |
| PublicationTitleAbbrev | ICIP |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020131 |
| Score | 2.1494002 |
| Snippet | Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2960 |
| SubjectTerms | Bayersian inference Bayes methods Breast Cancer Elastography In vivo Inference algorithms Motion Tracking Strain Tracking Ultrasonic imaging Ultrasound |
| Title | Augmented Region-Growing-Based Motion Tracking Using Bayesian Inference For Quasi-Static Ultrasound Elastography |
| URI | https://ieeexplore.ieee.org/document/9191296 |
| WOSCitedRecordID | wos000646178503014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LagIxFA0qXXTVh5a-yaLLRmeSOEmWVbR1UbGlgjvJ41oGiso8Cv37JuNgKXTTXSYQAgmZc25yzr0I3fmz53-9QefHmSacgSA6lglhMoF-LAy1EFXFJsR0KhcLNWug-70XBgAq8Rl0Q7N6y3cbW4arsp7ywQVVSRM1hRA7r9Y-uAp5Y2oHcByp3mQ4mflYRQT1Fo269chfJVQqBBkf_W_uY9T5seLh2R5kTlAD1qfoqOaOuD6ZeRttH8r3Kr-mw68QNMbk0QfYfggZeJxy-Lmq1oM9NNlwOY4rqQAe6C8ILko82U823mT4pdR5SgIPTS2efxSZzkP1JTzyVLuoc1x30Hw8ehs-kbqaAklpxAri-jLRnoxITgGokRqA0XhlWSCBNEocpyI2xjnPEYy1UmlmnIk0BacYB83OUGu9WcM5wiuPcNJwQ7kFzjjVFpQ1ikn_4VvRBWqHBVxudwkzlvXaXf7dfYUOwx7tFHLXqFVkJdygA_tZpHl2W-3yN6OiqpE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dRO_zYOPZmuTrE0f3XCuuI0pG-xt5ONOBrKNtRX89yZdqQi--JYGQiAhPecm59yL0L09e_bX63R-nEnCGYRE-iIgTATQ9kNFNXh5sYlwNBKzWTSuoIfSCwMAufgMmq6Zv-Wbtc7cVVkrssEFjYI9tN_mnPo7t1YZXrnMMYUH2PeiVtyNxzZaCZ1-i3rNYuyvIio5hvRq_5v9GDV-zHh4XMLMCarA6hTVCvaIi7OZ1NHmMXvPM2wa_AZOZUyebYhth5CORSqDh3m9HmzBSbvrcZyLBXBHfoHzUeK4nKy33uLXTCZL4pjoUuPpR7qViau_hJ8s2U6LLNcNNO09Tbp9UtRTIEvqsZSYtgikpSOCUwCqhARg1F9o5mgg9QLDaegrZYxlCUprEUmmjPIkBRMxDpKdoepqvYJzhBcW44TiinINnHEqNURaRUzYD9vyLlDdLeB8s0uZMS_W7vLv7jt02J8MB_NBPHq5Qkduv3Z6uWtUTbcZ3KAD_Zkuk-1tvuPfrXOt2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Augmented+Region-Growing-Based+Motion+Tracking+Using+Bayesian+Inference+For+Quasi-Static+Ultrasound+Elastography&rft.au=Peng%2C+Bo&rft.au=Yang%2C+Tianlan&rft.au=He%2C+Tingting&rft.au=Jiang%2C+Jingfeng&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=2960&rft.epage=2964&rft_id=info:doi/10.1109%2FICIP40778.2020.9191296&rft.externalDocID=9191296 |