Augmented Region-Growing-Based Motion Tracking Using Bayesian Inference For Quasi-Static Ultrasound Elastography

Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in evaluating motion tracking strategies for large deformation quasi-static elastography. In this study, Bayesian inference is incorporated into a region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - International Conference on Image Processing S. 2960 - 2964
Hauptverfasser: Peng, Bo, Yang, Tianlan, He, Tingting, Jiang, Jingfeng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2020
Schlagworte:
ISSN:2381-8549
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in evaluating motion tracking strategies for large deformation quasi-static elastography. In this study, Bayesian inference is incorporated into a region-growing motion estimation framework and we named the proposed tracking algorithm as a region-growing Bayesian motion tracking (RGBMT) algorithm. Basically, we replace signal correlation by a maximum posterior probability density function to perform motion tracking. Using a computer-simulated phantom and one set of human subject ultrasound data with pathologically-confirmed breast cancer, the proposed RGBMT algorithm was compared to the original region-growing motion tracking algorithm. Our preliminary data suggested that the addition of Bayesian inference is useful in terms of improving the accuracy of motion tracking. Results from both the numerical phantom and in vivo ultrasound data set showed that there are fewer tracking errors in axial displacement and strain images obtained from the proposed RGBMT algorithms. That explained why the contrast-to-noise (CNR) values were higher and the breast tumor on the reconstructed modulus image was better visualized.
AbstractList Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in evaluating motion tracking strategies for large deformation quasi-static elastography. In this study, Bayesian inference is incorporated into a region-growing motion estimation framework and we named the proposed tracking algorithm as a region-growing Bayesian motion tracking (RGBMT) algorithm. Basically, we replace signal correlation by a maximum posterior probability density function to perform motion tracking. Using a computer-simulated phantom and one set of human subject ultrasound data with pathologically-confirmed breast cancer, the proposed RGBMT algorithm was compared to the original region-growing motion tracking algorithm. Our preliminary data suggested that the addition of Bayesian inference is useful in terms of improving the accuracy of motion tracking. Results from both the numerical phantom and in vivo ultrasound data set showed that there are fewer tracking errors in axial displacement and strain images obtained from the proposed RGBMT algorithms. That explained why the contrast-to-noise (CNR) values were higher and the breast tumor on the reconstructed modulus image was better visualized.
Author Jiang, Jingfeng
Yang, Tianlan
He, Tingting
Peng, Bo
Author_xml – sequence: 1
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
  organization: Southwest Petroleum University,School of Computer Science,Chengdu,Sichuan,China
– sequence: 2
  givenname: Tianlan
  surname: Yang
  fullname: Yang, Tianlan
  organization: Southwest Petroleum University,School of Computer Science,Chengdu,Sichuan,China
– sequence: 3
  givenname: Tingting
  surname: He
  fullname: He, Tingting
  organization: Southwest Petroleum University,School of Computer Science,Chengdu,Sichuan,China
– sequence: 4
  givenname: Jingfeng
  surname: Jiang
  fullname: Jiang, Jingfeng
  organization: Michigan Technological University,Department of Biomedical Engineering,Houghton,Michigan,USA
BookMark eNotkNtqAjEYhNPSQtX6BIWSF1ibw7qbXKpUu2DpSa_l383vNq0mkkSKb98t9WYGPoZhmD65ct4hIfecjThn-qGaVa85K0s1EkywkeaaC11ckKEuFS-F4oXU4-KS9IRUPFPjXN-QfoxfrEtzyXvkMDm2e3QJDX3H1nqXLYL_sa7NphA7-OxTB-kqQPPdUbqOfzqFE0YLjlZuiwFdg3TuA307QrTZR4JkG7repQDRH52hjzuIybcBDp-nW3K9hV3E4dkHZD1_XM2esuXLoppNlpkVTKbMjFUBWpYqF4iiVoAoBd82sputBStMLkpe18YoruumURpkbWoGAo2WOYIckLv_XouIm0Owewinzfkg-QtXeF6U
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP40778.2020.9191296
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728163956
1728163951
EISSN 2381-8549
EndPage 2964
ExternalDocumentID 9191296
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-d586a937842ee2b8aee321fc30139206d4271bbdd819bcc89a3bdb0a2ed934ea3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000646178503014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:34:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d586a937842ee2b8aee321fc30139206d4271bbdd819bcc89a3bdb0a2ed934ea3
PageCount 5
ParticipantIDs ieee_primary_9191296
PublicationCentury 2000
PublicationDate 2020-Oct.
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.1494002
Snippet Tissue motion tracking is a critically important step for many ultrasound elastography applications. In this study, we are particularly interested in...
SourceID ieee
SourceType Publisher
StartPage 2960
SubjectTerms Bayersian inference
Bayes methods
Breast Cancer
Elastography
In vivo
Inference algorithms
Motion Tracking
Strain
Tracking
Ultrasonic imaging
Ultrasound
Title Augmented Region-Growing-Based Motion Tracking Using Bayesian Inference For Quasi-Static Ultrasound Elastography
URI https://ieeexplore.ieee.org/document/9191296
WOSCitedRecordID wos000646178503014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LagIxFA0qXXTVh5a-yaLLRmeSOEmWVbR1UbGlgjvJ41oGiso8Cv37JuNgKXTTXSYQAgmZc25yzr0I3fmz53-9QefHmSacgSA6lglhMoF-LAy1EFXFJsR0KhcLNWug-70XBgAq8Rl0Q7N6y3cbW4arsp7ywQVVSRM1hRA7r9Y-uAp5Y2oHcByp3mQ4mflYRQT1Fo269chfJVQqBBkf_W_uY9T5seLh2R5kTlAD1qfoqOaOuD6ZeRttH8r3Kr-mw68QNMbk0QfYfggZeJxy-Lmq1oM9NNlwOY4rqQAe6C8ILko82U823mT4pdR5SgIPTS2efxSZzkP1JTzyVLuoc1x30Hw8ehs-kbqaAklpxAri-jLRnoxITgGokRqA0XhlWSCBNEocpyI2xjnPEYy1UmlmnIk0BacYB83OUGu9WcM5wiuPcNJwQ7kFzjjVFpQ1ikn_4VvRBWqHBVxudwkzlvXaXf7dfYUOwx7tFHLXqFVkJdygA_tZpHl2W-3yN6OiqpE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCvo0dRO_zYOPZmuTrE0f3XCuuI0pG-xt5ONOBrKNtRX89yZdqQi--JYGQiAhPecm59yL0L09e_bX63R-nEnCGYRE-iIgTATQ9kNFNXh5sYlwNBKzWTSuoIfSCwMAufgMmq6Zv-Wbtc7cVVkrssEFjYI9tN_mnPo7t1YZXrnMMYUH2PeiVtyNxzZaCZ1-i3rNYuyvIio5hvRq_5v9GDV-zHh4XMLMCarA6hTVCvaIi7OZ1NHmMXvPM2wa_AZOZUyebYhth5CORSqDh3m9HmzBSbvrcZyLBXBHfoHzUeK4nKy33uLXTCZL4pjoUuPpR7qViau_hJ8s2U6LLNcNNO09Tbp9UtRTIEvqsZSYtgikpSOCUwCqhARg1F9o5mgg9QLDaegrZYxlCUprEUmmjPIkBRMxDpKdoepqvYJzhBcW44TiinINnHEqNURaRUzYD9vyLlDdLeB8s0uZMS_W7vLv7jt02J8MB_NBPHq5Qkduv3Z6uWtUTbcZ3KAD_Zkuk-1tvuPfrXOt2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Augmented+Region-Growing-Based+Motion+Tracking+Using+Bayesian+Inference+For+Quasi-Static+Ultrasound+Elastography&rft.au=Peng%2C+Bo&rft.au=Yang%2C+Tianlan&rft.au=He%2C+Tingting&rft.au=Jiang%2C+Jingfeng&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=2960&rft.epage=2964&rft_id=info:doi/10.1109%2FICIP40778.2020.9191296&rft.externalDocID=9191296