Taking a Deeper Look at the Inverse Compositional Algorithm
In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by this well-established technique, and subsequently propose to relax these assumptions by incorporating data-driven priors into this model. Mo...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4576 - 4585 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2019
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by this well-established technique, and subsequently propose to relax these assumptions by incorporating data-driven priors into this model. More specifically, we unroll a robust version of the inverse compositional algorithm and replace multiple components of this algorithm using more expressive models whose parameters we train in an end-to-end fashion from data. Our experiments on several challenging 3D rigid motion estimation tasks demonstrate the advantages of combining optimization with learning-based techniques, outperforming the classic inverse compositional algorithm as well as data-driven image-to-pose regression approaches. |
|---|---|
| AbstractList | In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by this well-established technique, and subsequently propose to relax these assumptions by incorporating data-driven priors into this model. More specifically, we unroll a robust version of the inverse compositional algorithm and replace multiple components of this algorithm using more expressive models whose parameters we train in an end-to-end fashion from data. Our experiments on several challenging 3D rigid motion estimation tasks demonstrate the advantages of combining optimization with learning-based techniques, outperforming the classic inverse compositional algorithm as well as data-driven image-to-pose regression approaches. |
| Author | Lv, Zhaoyang Rehg, James M. Geiger, Andreas Dellaert, Frank |
| Author_xml | – sequence: 1 givenname: Zhaoyang surname: Lv fullname: Lv, Zhaoyang organization: GEORGIA TECH – sequence: 2 givenname: Frank surname: Dellaert fullname: Dellaert, Frank organization: Georgia Tech – sequence: 3 givenname: James M. surname: Rehg fullname: Rehg, James M. organization: Georgia Institute of Technology – sequence: 4 givenname: Andreas surname: Geiger fullname: Geiger, Andreas organization: MPI-IS and Univ. of Tuebingen |
| BookMark | eNotzMtKw0AUgOFRFKw1axdu5gUSz5mZzAVXJd4KAUWq2zJJTtqxSaYkQfDtFXT1Lz74L9nZEAdi7BohQwR3W3y8vmUC0GUAyuAJS5yxaIRFKZy0p2yBoGWqHboLlkzTJwBIgaidXbC7jT-EYcc9vyc60sjLGA_cz3zeE18PXzROxIvYH-MU5hAH3_FVt4tjmPf9FTtvfTdR8t8le3982BTPafnytC5WZRoEyDltlHOVFjVWlVdkWzJGGee9J43SmlbVra2hhqapTO4UtrURngDqvJK_KOSS3fx9AxFtj2Po_fi9tS5XUlv5AxOkSgk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2019.00471 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728132938 1728132932 |
| EISSN | 1063-6919 |
| EndPage | 4585 |
| ExternalDocumentID | 8954368 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-d499b62c1bba4e8fe77479aaae61387f4cf8c0c0ddb75941fc72ae00c5b3f4c23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529484004077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:24:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-d499b62c1bba4e8fe77479aaae61387f4cf8c0c0ddb75941fc72ae00c5b3f4c23 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8954368 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-June |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-June |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.3710182 |
| Snippet | In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4576 |
| SubjectTerms | 3D from Multiview and Sensors Computer vision Data models Integrated circuits Lighting Motion and Tracking Motion estimation Neural networks Optimization Methods Three-dimensional displays |
| Title | Taking a Deeper Look at the Inverse Compositional Algorithm |
| URI | https://ieeexplore.ieee.org/document/8954368 |
| WOSCitedRecordID | wos000529484004077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UeujJtlr6JoceuzX7TEJPxVZ6EJFixZvkMWkF68q69vc3WRe99NJDICQhgQnDzCTffANwn1GbSFQ2sBFikEgXoHCqwkA4U50qbUJTMd5Mh2w04rOZGDfgYZ8Lg4gV-Awffbf6yze53vqnsh4XqSdMb0KTsWyXq7V_T4ldJJMJXrP3hFT0-tPxu8dueULKpEqRP5RPqazHoP2_c0-ge0jDI-O9gTmFBq7OoF37jaTWyk0HniZVSSkiyQviGgsydJ4zkSVxzh3xRBrFBolX_BqgJZfkefmZF4vy67sLH4PXSf8tqIsiBIuIxmVgXIiiskiHSskEuUXnvzEhpURnmDmzibZcU02NUSwVSWg1iyRSqlMVu8koPofWKl_hBRBppTAy5ShCt5V2yyK0TqcjnaWxa5fQ8bKYr3e8F_NaDFd_D1_DsRf2DkZ1A62y2OItHOmfcrEp7qrL-gV-SJdK |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfRUtRXf5uDRtdl3gieploprKVJLbyXJTrRQu2W79febbJf24sVDICQhgQnDzCTffANwG1EdCJTa0R6iEwgToDAqXYcbUx1KlbppyXgzSuJ-n43HfFCDu00uDCKW4DO8t93yLz_N1Mo-lbUZDy1h-g7s2spZVbbW5kXFN7FMxFnF3-NS3u6MBu8WvWUpKYMySX5bQKW0H93G_04-hNY2EY8MNibmCGo4P4ZG5TmSSi-XTXgYlkWliCBPiAvMSWJ8ZyIKYtw7Yqk08iUSq_oVREvMyOPsM8unxdd3Cz66z8NOz6nKIjhTj_qFk5ogRUaecqUUATKNxoOLuRACjWlmsQ6UZooqmqYyDnngahV7AilVofTNpOefQH2ezfEUiNCCpyJkyF2zlTLLPNRGqz0Vhb5pZ9C0spgs1swXk0oM538P38B-b_iWTJKX_usFHFjBr0FVl1Av8hVewZ76KabL_Lq8uF-QMpqT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Taking+a+Deeper+Look+at+the+Inverse+Compositional+Algorithm&rft.au=Lv%2C+Zhaoyang&rft.au=Dellaert%2C+Frank&rft.au=Rehg%2C+James+M.&rft.au=Geiger%2C+Andreas&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4576&rft.epage=4585&rft_id=info:doi/10.1109%2FCVPR.2019.00471&rft.externalDocID=8954368 |