Reconfigurable Dataflow Optimization for Spatiotemporal Spiking Neural Computation on Systolic Array Accelerators

Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on neuromorphic processors. Compared with the conventional artificial neural networks, SNNs are well-suited for processing complex spatiotemporal dat...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - IEEE International Conference on Computer Design pp. 57 - 64
Main Authors: Lee, Jeong-Jun, Li, Peng
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2020
Subjects:
ISSN:2576-6996
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on neuromorphic processors. Compared with the conventional artificial neural networks, SNNs are well-suited for processing complex spatiotemporal data. Despite its significance, dataflow optimization of spiking neural accelerator architectures has not been extensively studied. Recognizing the need for efficient processing of complex spatiotemporal data while considering the all-or-none nature of spiking activities, we propose holistic reconfigurable dataflow optimization for systolic array acceleration of spiking convolutional networks (S-CNNs). A novel scheme is introduced for parallel acceleration of computation across multiple time points, which further allows for systemic optimization of variable tiling for a large performance and efficiency gains. We show how variable tiling, in particular, the positioning of the temporal dimension, can be targeted to optimize data movement, throughput, and energy efficiency. Furthermore, we explore joint layer-dependent dataflow and accelerator hardware optimization to further boost performance and energy efficiency. To support systemic design space exploration, we develop an SNN dataflow simulator capable of analyzing the throughput and energy dissipation of systolic array accelerators for any targeted S-CNN while considering the inherent spatiotemporal characteristics of spiking neural computation. The proposed techniques deliver orders of magnitude of improvements on throughput, energy efficiency, and delay-energy product for accelerating deep Alexnet and VGG-16 SNNs.
AbstractList Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on neuromorphic processors. Compared with the conventional artificial neural networks, SNNs are well-suited for processing complex spatiotemporal data. Despite its significance, dataflow optimization of spiking neural accelerator architectures has not been extensively studied. Recognizing the need for efficient processing of complex spatiotemporal data while considering the all-or-none nature of spiking activities, we propose holistic reconfigurable dataflow optimization for systolic array acceleration of spiking convolutional networks (S-CNNs). A novel scheme is introduced for parallel acceleration of computation across multiple time points, which further allows for systemic optimization of variable tiling for a large performance and efficiency gains. We show how variable tiling, in particular, the positioning of the temporal dimension, can be targeted to optimize data movement, throughput, and energy efficiency. Furthermore, we explore joint layer-dependent dataflow and accelerator hardware optimization to further boost performance and energy efficiency. To support systemic design space exploration, we develop an SNN dataflow simulator capable of analyzing the throughput and energy dissipation of systolic array accelerators for any targeted S-CNN while considering the inherent spatiotemporal characteristics of spiking neural computation. The proposed techniques deliver orders of magnitude of improvements on throughput, energy efficiency, and delay-energy product for accelerating deep Alexnet and VGG-16 SNNs.
Author Lee, Jeong-Jun
Li, Peng
Author_xml – sequence: 1
  givenname: Jeong-Jun
  surname: Lee
  fullname: Lee, Jeong-Jun
  email: jeong-jun@ucsb.edu
  organization: Electrical and Computer Engineering, University of California,Santa Barbara,CA,USA
– sequence: 2
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  email: lip@ucsb.edu
  organization: Electrical and Computer Engineering, University of California,Santa Barbara,CA,USA
BookMark eNotT1FLwzAYjKLgNv0F-pA_0PklWZL2cXROB8OB0-eRtl9GtG1qmiHz19sx4eDu4O7gxuSq9S0S8sBgyhhkj6s8X0gQWk85cJgCANcXZMw0T1mmGcwuyYhLrRKVZeqGjPv-c8ikgukR-X7D0rfW7Q_BFDXShYnG1v6HbrroGvdrovMttT7QbXfSEZvOB1MP1n25dk9f8XCyuW-6QzynB2yPffS1K-k8BHOk87LEGoOJPvS35Nqause7f56Qj-XTe_6SrDfPq3y-ThwHEZOKD53UaAuyAAQttExBcpMN55StFFOAUgksGSsL0KawaVbNUAvDVGVsKSbk_rzrEHHXBdeYcNxlPBVyJsQfRPdeyQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCD50377.2020.00027
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728197104
9781728197104
EISSN 2576-6996
EndPage 64
ExternalDocumentID 9283543
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1948201,1940761
  funderid: 10.13039/501100001809
GroupedDBID -~X
29F
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-d2cce8a7f05b0e073758052a90276fd6160e563ec11cb07abf89d4e73a16dafc3
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652198500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:32:57 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d2cce8a7f05b0e073758052a90276fd6160e563ec11cb07abf89d4e73a16dafc3
PageCount 8
ParticipantIDs ieee_primary_9283543
PublicationCentury 2000
PublicationDate 2020-Oct.
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationTitle Proceedings - IEEE International Conference on Computer Design
PublicationTitleAbbrev ICCD
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008317
Score 2.2189248
Snippet Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on...
SourceID ieee
SourceType Publisher
StartPage 57
SubjectTerms dataflow
hardware accelerator
neuromorphic computing
spiking neural networks
systolic array
Title Reconfigurable Dataflow Optimization for Spatiotemporal Spiking Neural Computation on Systolic Array Accelerators
URI https://ieeexplore.ieee.org/document/9283543
WOSCitedRecordID wos000652198500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8aAXH634JgePrs0m3c3mWFpFQWrBB72VPGZlQbe6bRX_vZPdpSp4EXJIlkBgws6XSeb7hpBTYyNI8KgbKAAe9FRiAmO1CKyNUw1OaCiVmB5v5GiUTCZq3CBnKy4MAJTJZ3Duu-VbvpvZpb8q6yovDtYTTdKUMq64WiuvmyAQ1tS4kKnu9WAwjJiQEkNA7rO3GP9dQKXEj8vN_628RTrfRDw6XkHMNmlAvkM2fmgItsmbDyDzNHtaFp4FRYfaF-SdfdBbdAYvNcuS4tGU3pXJ07UW1TMOM39NTr08Bw6r8g7VbGxeydxLBtN-UehP2rcW8al8kp93yMPlxf3gKqjrKAQZZ2IROI5zEi1TFhkG-E9jjMAirhXaJE5dHMYMoliADUNrmNQmTZTrgRQ6jJ1OrdglrXyWwx6hOtEsdZw7HSH0a2UERtAGNHpMXMCKfdL2xpu-VlIZ09puB39_PiTrfneq3Lgj0loUSzgma_Z9kc2Lk3J_vwDb1asd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CurFRyu-zcGja7PJvnIsrdJirQWr9FaS7KwsaKvbVvHfO9ldqoIXIYdkCQQm7HyZZL5vCDnXxocIj7qOBOCOJyPtaKOEY0yQKIiFglyJ6bEX9vvRaCQHFXKx5MIAQJ58Bpe2m7_lx1OzsFdlDWnFwTyxQlZ9z-OsYGst_W6EUFiS41wmG91Wq-0zEYYYBHKbv8X47xIqOYJcb_1v7W1S_6bi0cESZHZIBSa7ZPOHimCNvNkQcpKkT4vM8qBoW9mSvNMPeofu4KXkWVI8nNL7PH26VKN6xmFqL8qpFejAYVHgoZiNzWqZW9Fg2swy9UmbxiBC5Y_yszp5uL4atjpOWUnBSTkTcyfmOCdSYcJ8zQD_aowSmM-VRJsESRy4AQM_EGBc12gWKp1EMvYgFMoNYpUYsUeqk-kE9glVkWJJzHmsfAR_JbXAGFqDQp-JCxhxQGrWeOPXQixjXNrt8O_PZ2S9M7ztjXvd_s0R2bA7VWTKHZPqPFvACVkz7_N0lp3me_0F7JauZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Conference+on+Computer+Design&rft.atitle=Reconfigurable+Dataflow+Optimization+for+Spatiotemporal+Spiking+Neural+Computation+on+Systolic+Array+Accelerators&rft.au=Lee%2C+Jeong-Jun&rft.au=Li%2C+Peng&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2576-6996&rft.spage=57&rft.epage=64&rft_id=info:doi/10.1109%2FICCD50377.2020.00027&rft.externalDocID=9283543