Robust Precoding for 3D Massive MIMO with Riemannian Manifold Optimization

This paper investigates robust downlink precoding for three-dimensional (3D) massive multi-input multi-output (MIMO) configuration with matrix manifold optimization. Starting with a posteriori channel model, we formulate the robust precoder design to maximize an upper bound of ergodic weighted sum-r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC pp. 1341 - 1346
Main Authors: Wang, Chen, Lu, An-An, Gao, Xiqi, Ding, Zhi
Format: Conference Proceeding
Language:English
Published: IEEE 10.04.2022
Subjects:
ISSN:1558-2612
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper investigates robust downlink precoding for three-dimensional (3D) massive multi-input multi-output (MIMO) configuration with matrix manifold optimization. Starting with a posteriori channel model, we formulate the robust precoder design to maximize an upper bound of ergodic weighted sum-rate under a total power budget. We derive the generalized eigenvector structure for optimal precoder with matrix manifold optimization. However, since the precoding of multiple users is coupled in the structure, we maximize the objective function for each user in alternation and prove the solution of each individual problem is the generalized eigenvector corresponding to the maximum generalized eigenvalue. In accordance with this, we present an iterative algorithm to design the precoder. Furthermore, we propose a Riemannian conjugate gradient (RCG) method to solve the generalized eigenvalue problem (GEP) for higher efficiency in the precoder design algorithm.
AbstractList This paper investigates robust downlink precoding for three-dimensional (3D) massive multi-input multi-output (MIMO) configuration with matrix manifold optimization. Starting with a posteriori channel model, we formulate the robust precoder design to maximize an upper bound of ergodic weighted sum-rate under a total power budget. We derive the generalized eigenvector structure for optimal precoder with matrix manifold optimization. However, since the precoding of multiple users is coupled in the structure, we maximize the objective function for each user in alternation and prove the solution of each individual problem is the generalized eigenvector corresponding to the maximum generalized eigenvalue. In accordance with this, we present an iterative algorithm to design the precoder. Furthermore, we propose a Riemannian conjugate gradient (RCG) method to solve the generalized eigenvalue problem (GEP) for higher efficiency in the precoder design algorithm.
Author Gao, Xiqi
Wang, Chen
Ding, Zhi
Lu, An-An
Author_xml – sequence: 1
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  email: wc@seu.edu.cn
  organization: Southeast University,National Mobile Communications Research Laboratory,Nanjing,China,210096
– sequence: 2
  givenname: An-An
  surname: Lu
  fullname: Lu, An-An
  email: aalu@seu.edu.cn
  organization: Southeast University,National Mobile Communications Research Laboratory,Nanjing,China,210096
– sequence: 3
  givenname: Xiqi
  surname: Gao
  fullname: Gao, Xiqi
  email: xqgao@seu.edu.cn
  organization: Southeast University,National Mobile Communications Research Laboratory,Nanjing,China,210096
– sequence: 4
  givenname: Zhi
  surname: Ding
  fullname: Ding, Zhi
  email: zding@ucdavis.ca
  organization: University of California,Department of Electrical and Computer Engineering,Davis,CA,USA,95616
BookMark eNotj91KwzAYQKMouE6fQJC8QGu-L23SXEr9m6xWhuLlSNJUI1s6mqro01twV-fiwIGTkKPQB0fIBbAMgKnL1-qxKoBJyJAhZkpKkMgOSAJCFHmOQuAhmUFRlCkKwBOSxPjBGLJJzsjDqjefcaRPg7N968Mb7fqB8mta6xj9l6P1om7otx_f6cq7rQ7B6zDJ4Lt-09JmN_qt_9Wj78MpOe70JrqzPefk5fbmubpPl83dorpaph4ZH9MWVWusdtCJXFrLDVqDOUeBrbW5UKXSfBppQYAttRUdqFID76TJFRTW8Dk5_-9659x6N_itHn7W-2_-BzPYTs0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCNC51071.2022.9771720
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665442662
9781665442664
EISSN 1558-2612
EndPage 1346
ExternalDocumentID 9771720
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-d29dbcae1f647cc3b2cb243262dcc46989a3022d161c8ac6f198a13f7b4915cb3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819473100227&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d29dbcae1f647cc3b2cb243262dcc46989a3022d161c8ac6f198a13f7b4915cb3
PageCount 6
ParticipantIDs ieee_primary_9771720
PublicationCentury 2000
PublicationDate 2022-April-10
PublicationDateYYYYMMDD 2022-04-10
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April-10
  day: 10
PublicationDecade 2020
PublicationTitle IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC
PublicationTitleAbbrev WCNC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020544
Score 2.1928725
Snippet This paper investigates robust downlink precoding for three-dimensional (3D) massive multi-input multi-output (MIMO) configuration with matrix manifold...
SourceID ieee
SourceType Publisher
StartPage 1341
SubjectTerms 3D massive MIMO
Downlink
generalized eigenvalue problem
Linear programming
Manifolds
Massive MIMO
matrix manifold optimization
Precoding
robust precoding
Three-dimensional displays
Upper bound
Title Robust Precoding for 3D Massive MIMO with Riemannian Manifold Optimization
URI https://ieeexplore.ieee.org/document/9771720
WOSCitedRecordID wos000819473100227&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCLH5v4TQ4e7bYkbdOcp0OFfTAUdxvJSwoF146t8-_3pStTwYuQQ0kTSt4reb-X5JcfIXdRDMKJ2AQuAhmEaQxBAmADaZgGgU6ParEJORols5maNMj9jgvjnKsOn7mOf6z28m0BG79U1kWsgvEWE_Q9KeMtV2uXXCH0CGsGMOup7nt_1MffTfoUkPNO3fOXhEoVQQZH__v2MWl_U_HoZBdkTkjD5afk8Mctgi3yMi3MZl1iM0wlfSuKQJSKBzpEYIyTGR0-D8fUL7jSaeYWXqRI5_gyz9Liw9IxThqLmo3ZJm-Dx9f-U1BLJAQZ74kysFxZA9qxNA4lgDAcDA8RknELUIlDaoHjt4jrINEQp0wlmolUmlCxCIw4I828yN05oYb5rlarmJsw5QqBLFqVoeNCLJG7IC1vlflyewvGvDbI5d_VV-TAG97vu7DeNWmWq427IfvwWWbr1W3lui9Al5qZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jCuqLl028mwcf7bYkveV5Kpuu2xgT9zaakxQKrpWt8_d70pWp4IuQh5ImlJxTcr6T5MtHyJ3ngzDCV47xIHDcxAcnBNBOoFgMAp3uVWITwXAYzmZyXCP3Wy6MMaY8fGZa9rHcy9c5rO1SWRuxCsZbTNB3rHKW3LC1tukVgg-34gCzjmy_dYdd_OECmwRy3qr6_hJRKWPI0-H_vn5Emt9kPDrehpljUjPZCTn4cY9ggzxPcrVeFdgMk0nbiiIUpeKBRgiNcTqjUT8aUbvkSiepWViZojjDl1ma5O-ajnDaWFR8zCZ5fXqcdntOJZLgpLwjCkdzqRXEhiW-GwAIxUFxF0EZ1wClPGQscPwakR2EMfgJk2HMRBIoVzIPlDgl9SzPzBmhitmuOpY-V27CJUJZtCpD17lYPHNOGtYq84_NPRjzyiAXf1ffkr3eNBrMB_3hyyXZt06wuzCsc0XqxXJtrskufBbpanlTuvELiked6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Robust+Precoding+for+3D+Massive+MIMO+with+Riemannian+Manifold+Optimization&rft.au=Wang%2C+Chen&rft.au=Lu%2C+An-An&rft.au=Gao%2C+Xiqi&rft.au=Ding%2C+Zhi&rft.date=2022-04-10&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=1341&rft.epage=1346&rft_id=info:doi/10.1109%2FWCNC51071.2022.9771720&rft.externalDocID=9771720