Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design
The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to hardware design such as C to VHDL/Verilog feasible. HLS tools offer a plethora of techniques to optimize designs for both area and performanc...
Uloženo v:
| Vydáno v: | International Conference on Field-programmable Logic and Applications s. 397 - 403 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2019
|
| Témata: | |
| ISSN: | 1946-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to hardware design such as C to VHDL/Verilog feasible. HLS tools offer a plethora of techniques to optimize designs for both area and performance, but resource usage and timing reports of HLS tools mostly deviate from the post-implementation results. In addition, to evaluate a hardware design performance, it is critical to determine the maximum achievable clock frequency. Obtaining such information using static timing analysis provided by CAD tools is difficult, due to the multitude of tool options. Moreover, a binary search to find the maximum frequency is tedious, time-consuming, and often does not obtain the optimal result. To address these challenges, we propose a framework, called Pyramid, that uses machine learning to accurately estimate the optimal performance and resource utilization of an HLS design. For this purpose, we first create a database of C-to- FPGA results from a diverse set of benchmarks. To find the achievable maximum clock frequency, we use Minerva, which is an automated hardware optimization tool. Minerva determines the close-to-optimal settings of tools, using static timing analysis and a heuristic algorithm, and targets either optimal throughput or throughput-to-area. Pyramid uses the database to train an ensemble machine learning model to map the HLS-reported features to the results of Minerva. To this end, Pyramid recalibrates the results of HLS to bridge the accuracy gap, and enable developers to estimate the throughput or throughputto- area of hardware design with more than 95% accuracy and alleviates the need to perform actual implementation for estimation. |
|---|---|
| AbstractList | The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to hardware design such as C to VHDL/Verilog feasible. HLS tools offer a plethora of techniques to optimize designs for both area and performance, but resource usage and timing reports of HLS tools mostly deviate from the post-implementation results. In addition, to evaluate a hardware design performance, it is critical to determine the maximum achievable clock frequency. Obtaining such information using static timing analysis provided by CAD tools is difficult, due to the multitude of tool options. Moreover, a binary search to find the maximum frequency is tedious, time-consuming, and often does not obtain the optimal result. To address these challenges, we propose a framework, called Pyramid, that uses machine learning to accurately estimate the optimal performance and resource utilization of an HLS design. For this purpose, we first create a database of C-to- FPGA results from a diverse set of benchmarks. To find the achievable maximum clock frequency, we use Minerva, which is an automated hardware optimization tool. Minerva determines the close-to-optimal settings of tools, using static timing analysis and a heuristic algorithm, and targets either optimal throughput or throughput-to-area. Pyramid uses the database to train an ensemble machine learning model to map the HLS-reported features to the results of Minerva. To this end, Pyramid recalibrates the results of HLS to bridge the accuracy gap, and enable developers to estimate the throughput or throughputto- area of hardware design with more than 95% accuracy and alleviates the need to perform actual implementation for estimation. |
| Author | Mohammadi Makrani, Hosein Farahmand, Farnoud Sayadi, Hossein Pudukotai Dinakarrao, Sai Manoj Homayoun, Houman Rafatirad, Setareh Bondi, Sara |
| Author_xml | – sequence: 1 givenname: Hosein surname: Mohammadi Makrani fullname: Mohammadi Makrani, Hosein organization: George Mason University – sequence: 2 givenname: Farnoud surname: Farahmand fullname: Farahmand, Farnoud organization: George Mason University – sequence: 3 givenname: Hossein surname: Sayadi fullname: Sayadi, Hossein organization: California State University Long Beach – sequence: 4 givenname: Sara surname: Bondi fullname: Bondi, Sara organization: George Mason University – sequence: 5 givenname: Sai Manoj surname: Pudukotai Dinakarrao fullname: Pudukotai Dinakarrao, Sai Manoj organization: George Mason University – sequence: 6 givenname: Houman surname: Homayoun fullname: Homayoun, Houman organization: George Mason University – sequence: 7 givenname: Setareh surname: Rafatirad fullname: Rafatirad, Setareh organization: George Mason University |
| BookMark | eNotkEFPwkAQhVejiYhcvXiZP1Cc3e62u94MgpjUQBTOZNsOZRW2pFsw_HtL9PImL--byeTdsitfe2LsnuOQczSPk3k2FMjNEBETc8EGJtU8FZpLrWV6yXrcyCQ6uxs2COGrw1DJVKukx47zU2N3rnyCd1tsnCfIyDbe-QomXUA_dfMNbQ3j0LqdbQnaDcFsfzZbWLjdGbS-hA8K9aEpCJbBVgT1GixMXbWJMjrSFj5PvlsMLsBLp5W_Y9druw00-J99tpyMF6NplM1e30bPWeQExm1U8pxbqQourJZJLpXOUUieE5UG81hhbjhSIuNSqLIQpqB1SYakMrzrAHXcZw9_dx0RrfZN93ZzWmltBKKJfwGie13c |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/FPL.2019.00069 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728148847 1728148847 |
| EISSN | 1946-1488 |
| EndPage | 403 |
| ExternalDocumentID | 8892009 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-d1b1a45c12a846b458b0241beed90b350b910e643d25dc29cefde9e4591978083 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518670300059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:43:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-d1b1a45c12a846b458b0241beed90b350b910e643d25dc29cefde9e4591978083 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_8892009 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Sept. |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | International Conference on Field-programmable Logic and Applications |
| PublicationTitleAbbrev | FPL |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000547856 |
| Score | 2.0681386 |
| Snippet | The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 397 |
| SubjectTerms | Clocks ensemble learning Field programmable gate arrays Hardware HLS Optimization Throughput Timing timing estimation |
| Title | Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design |
| URI | https://ieeexplore.ieee.org/document/8892009 |
| WOSCitedRecordID | wos000518670300059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMatUjEwAWoRb93ASKjzcOywQiOGUiLRSt2q2L5WkSCp-pL632M7aVlY2OJIkSOfovt0-d13hDxoJlCYTOopxUMvcn0-RhZ4MQ0SKkMuQ-0iPeDDoZhMkqxFHg-9MIjo4DN8spfuX76u1MaWynpCJHW33hHnvO7VOtRTqDWmYnHjy-jTpJdmA4tuWT9K6njm3-kpLnmkp__b9ox0f7vwIDvkl3PSwrJDttlumX8X-hneHQaJ0DikziHdc1awrqBvPl0jRhGMwIOPhV18wciO8JpDXmrYl-1hbMkyqGaQg2U-vIGliOBzV5oHV8UKXh3i0SXjtD96efOa2QleEdBw7Wlf-nnElB_kRmHIiAlpsrEvzSvbGDAqjU5AI0d0wLQKEoUzjQlGLPGtJ5EIL0i7rEq8JBCKAFFJHWtBI81VLtiMcR5LFDLARF-Rjj2z6aK2x5g2x3X99-0bcmKDUmNat6S9Xm7wjhyr7bpYLe9dTH8AipSj8w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8NAEIaXUgU9qbTit3PwaGy-Ntl41ZaKaQ3YQm8luzstAU1Kmxb6793dxPbixVs2EDbsEOZl8sw7hDxIypCpTGoJEXqWb_p8lCywAtuNbO6F3JMm0nE4HLLJJEoa5HHXC4OIBj7DJ31p_uXLQqx1qazDWFR16x1Q33edqltrV1GxtTUVDWpnRseOOr0k1vCWdqS0DdG8n59i0kfv5H8bn5L2vg8Pkl2GOSMNzFtkk2yX6Xcmn2FgQEiE2iN1Dr1f0grKArrq41VyFEFJPPhY6MUXjPQQrzmkuYTfwj2MNVsGxQxS0NSHFWuOCD63uXpwla3g1UAebTLudUcvfauenmBlru2VlnS4k_pUOG6qNAb3KeMqHztcvbKOArW5UgqoBIl0qRRuJHAmMUKfRo52JWLeOWnmRY4XBDzmIgouA8lsX4YiZXRGwzDgyLiLkbwkLX1m00VlkDGtj-vq79v35Kg_GsTT-G34fk2OdYAqaOuGNMvlGm_JodiU2Wp5Z-L7Azz9pzo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Field-programmable+Logic+and+Applications&rft.atitle=Pyramid%3A+Machine+Learning+Framework+to+Estimate+the+Optimal+Timing+and+Resource+Usage+of+a+High-Level+Synthesis+Design&rft.au=Mohammadi+Makrani%2C+Hosein&rft.au=Farahmand%2C+Farnoud&rft.au=Sayadi%2C+Hossein&rft.au=Bondi%2C+Sara&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=1946-1488&rft.spage=397&rft.epage=403&rft_id=info:doi/10.1109%2FFPL.2019.00069&rft.externalDocID=8892009 |