Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design

The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to hardware design such as C to VHDL/Verilog feasible. HLS tools offer a plethora of techniques to optimize designs for both area and performanc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Field-programmable Logic and Applications s. 397 - 403
Hlavní autoři: Mohammadi Makrani, Hosein, Farahmand, Farnoud, Sayadi, Hossein, Bondi, Sara, Pudukotai Dinakarrao, Sai Manoj, Homayoun, Houman, Rafatirad, Setareh
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2019
Témata:
ISSN:1946-1488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to hardware design such as C to VHDL/Verilog feasible. HLS tools offer a plethora of techniques to optimize designs for both area and performance, but resource usage and timing reports of HLS tools mostly deviate from the post-implementation results. In addition, to evaluate a hardware design performance, it is critical to determine the maximum achievable clock frequency. Obtaining such information using static timing analysis provided by CAD tools is difficult, due to the multitude of tool options. Moreover, a binary search to find the maximum frequency is tedious, time-consuming, and often does not obtain the optimal result. To address these challenges, we propose a framework, called Pyramid, that uses machine learning to accurately estimate the optimal performance and resource utilization of an HLS design. For this purpose, we first create a database of C-to- FPGA results from a diverse set of benchmarks. To find the achievable maximum clock frequency, we use Minerva, which is an automated hardware optimization tool. Minerva determines the close-to-optimal settings of tools, using static timing analysis and a heuristic algorithm, and targets either optimal throughput or throughput-to-area. Pyramid uses the database to train an ensemble machine learning model to map the HLS-reported features to the results of Minerva. To this end, Pyramid recalibrates the results of HLS to bridge the accuracy gap, and enable developers to estimate the throughput or throughputto- area of hardware design with more than 95% accuracy and alleviates the need to perform actual implementation for estimation.
AbstractList The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to hardware design such as C to VHDL/Verilog feasible. HLS tools offer a plethora of techniques to optimize designs for both area and performance, but resource usage and timing reports of HLS tools mostly deviate from the post-implementation results. In addition, to evaluate a hardware design performance, it is critical to determine the maximum achievable clock frequency. Obtaining such information using static timing analysis provided by CAD tools is difficult, due to the multitude of tool options. Moreover, a binary search to find the maximum frequency is tedious, time-consuming, and often does not obtain the optimal result. To address these challenges, we propose a framework, called Pyramid, that uses machine learning to accurately estimate the optimal performance and resource utilization of an HLS design. For this purpose, we first create a database of C-to- FPGA results from a diverse set of benchmarks. To find the achievable maximum clock frequency, we use Minerva, which is an automated hardware optimization tool. Minerva determines the close-to-optimal settings of tools, using static timing analysis and a heuristic algorithm, and targets either optimal throughput or throughput-to-area. Pyramid uses the database to train an ensemble machine learning model to map the HLS-reported features to the results of Minerva. To this end, Pyramid recalibrates the results of HLS to bridge the accuracy gap, and enable developers to estimate the throughput or throughputto- area of hardware design with more than 95% accuracy and alleviates the need to perform actual implementation for estimation.
Author Mohammadi Makrani, Hosein
Farahmand, Farnoud
Sayadi, Hossein
Pudukotai Dinakarrao, Sai Manoj
Homayoun, Houman
Rafatirad, Setareh
Bondi, Sara
Author_xml – sequence: 1
  givenname: Hosein
  surname: Mohammadi Makrani
  fullname: Mohammadi Makrani, Hosein
  organization: George Mason University
– sequence: 2
  givenname: Farnoud
  surname: Farahmand
  fullname: Farahmand, Farnoud
  organization: George Mason University
– sequence: 3
  givenname: Hossein
  surname: Sayadi
  fullname: Sayadi, Hossein
  organization: California State University Long Beach
– sequence: 4
  givenname: Sara
  surname: Bondi
  fullname: Bondi, Sara
  organization: George Mason University
– sequence: 5
  givenname: Sai Manoj
  surname: Pudukotai Dinakarrao
  fullname: Pudukotai Dinakarrao, Sai Manoj
  organization: George Mason University
– sequence: 6
  givenname: Houman
  surname: Homayoun
  fullname: Homayoun, Houman
  organization: George Mason University
– sequence: 7
  givenname: Setareh
  surname: Rafatirad
  fullname: Rafatirad, Setareh
  organization: George Mason University
BookMark eNotkEFPwkAQhVejiYhcvXiZP1Cc3e62u94MgpjUQBTOZNsOZRW2pFsw_HtL9PImL--byeTdsitfe2LsnuOQczSPk3k2FMjNEBETc8EGJtU8FZpLrWV6yXrcyCQ6uxs2COGrw1DJVKukx47zU2N3rnyCd1tsnCfIyDbe-QomXUA_dfMNbQ3j0LqdbQnaDcFsfzZbWLjdGbS-hA8K9aEpCJbBVgT1GixMXbWJMjrSFj5PvlsMLsBLp5W_Y9druw00-J99tpyMF6NplM1e30bPWeQExm1U8pxbqQourJZJLpXOUUieE5UG81hhbjhSIuNSqLIQpqB1SYakMrzrAHXcZw9_dx0RrfZN93ZzWmltBKKJfwGie13c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FPL.2019.00069
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728148847
1728148847
EISSN 1946-1488
EndPage 403
ExternalDocumentID 8892009
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-d1b1a45c12a846b458b0241beed90b350b910e643d25dc29cefde9e4591978083
IEDL.DBID RIE
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518670300059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:43:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-d1b1a45c12a846b458b0241beed90b350b910e643d25dc29cefde9e4591978083
PageCount 7
ParticipantIDs ieee_primary_8892009
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle International Conference on Field-programmable Logic and Applications
PublicationTitleAbbrev FPL
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000547856
Score 2.0681386
Snippet The emergence of High-Level Synthesis (HLS) tools shifted the paradigm of hardware design by making the process of mapping high-level programming languages to...
SourceID ieee
SourceType Publisher
StartPage 397
SubjectTerms Clocks
ensemble learning
Field programmable gate arrays
Hardware
HLS
Optimization
Throughput
Timing
timing estimation
Title Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design
URI https://ieeexplore.ieee.org/document/8892009
WOSCitedRecordID wos000518670300059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ27T8MwEMatUjEwAWoRb93ASKjzcOywQiOGUiLRSt2q2L5WkSCp-pL632M7aVlY2OJIkSOfovt0-d13hDxoJlCYTOopxUMvcn0-RhZ4MQ0SKkMuQ-0iPeDDoZhMkqxFHg-9MIjo4DN8spfuX76u1MaWynpCJHW33hHnvO7VOtRTqDWmYnHjy-jTpJdmA4tuWT9K6njm3-kpLnmkp__b9ox0f7vwIDvkl3PSwrJDttlumX8X-hneHQaJ0DikziHdc1awrqBvPl0jRhGMwIOPhV18wciO8JpDXmrYl-1hbMkyqGaQg2U-vIGliOBzV5oHV8UKXh3i0SXjtD96efOa2QleEdBw7Wlf-nnElB_kRmHIiAlpsrEvzSvbGDAqjU5AI0d0wLQKEoUzjQlGLPGtJ5EIL0i7rEq8JBCKAFFJHWtBI81VLtiMcR5LFDLARF-Rjj2z6aK2x5g2x3X99-0bcmKDUmNat6S9Xm7wjhyr7bpYLe9dTH8AipSj8w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1NS8NAEIaXUgU9qbTit3PwaGy-Ntl41ZaKaQ3YQm8luzstAU1Kmxb6793dxPbixVs2EDbsEOZl8sw7hDxIypCpTGoJEXqWb_p8lCywAtuNbO6F3JMm0nE4HLLJJEoa5HHXC4OIBj7DJ31p_uXLQqx1qazDWFR16x1Q33edqltrV1GxtTUVDWpnRseOOr0k1vCWdqS0DdG8n59i0kfv5H8bn5L2vg8Pkl2GOSMNzFtkk2yX6Xcmn2FgQEiE2iN1Dr1f0grKArrq41VyFEFJPPhY6MUXjPQQrzmkuYTfwj2MNVsGxQxS0NSHFWuOCD63uXpwla3g1UAebTLudUcvfauenmBlru2VlnS4k_pUOG6qNAb3KeMqHztcvbKOArW5UgqoBIl0qRRuJHAmMUKfRo52JWLeOWnmRY4XBDzmIgouA8lsX4YiZXRGwzDgyLiLkbwkLX1m00VlkDGtj-vq79v35Kg_GsTT-G34fk2OdYAqaOuGNMvlGm_JodiU2Wp5Z-L7Azz9pzo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Field-programmable+Logic+and+Applications&rft.atitle=Pyramid%3A+Machine+Learning+Framework+to+Estimate+the+Optimal+Timing+and+Resource+Usage+of+a+High-Level+Synthesis+Design&rft.au=Mohammadi+Makrani%2C+Hosein&rft.au=Farahmand%2C+Farnoud&rft.au=Sayadi%2C+Hossein&rft.au=Bondi%2C+Sara&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=1946-1488&rft.spage=397&rft.epage=403&rft_id=info:doi/10.1109%2FFPL.2019.00069&rft.externalDocID=8892009