Convergence Rate Analysis of Viscosity Approximation based Gradient Algorithms
Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance. Convergence rate analysis is an essential part in the process of designing new proximal methods. In this paper, we present a viscosity-approxima...
Uloženo v:
| Vydáno v: | Proceedings of ... International Joint Conference on Neural Networks s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2020
|
| Témata: | |
| ISSN: | 2161-4407 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance. Convergence rate analysis is an essential part in the process of designing new proximal methods. In this paper, we present a viscosity-approximation-based proximal gradient algorithm and prove its linear convergence rate. We also present its accelerated variant and discuss the condition for the improved convergence rate. These algorithms are applied to solve the problem of multiclass image classification problem. CIFAR10, a popular publicly available benchmark real image classification dataset is used to experimentally validate our theoretical proofs, and the classification performances are compared with that of the state-of-the-art algorithms. To the best of our knowledge, it is the first time that the viscosity-approximation concept is applied to a multiclass classification problem. |
|---|---|
| AbstractList | Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance. Convergence rate analysis is an essential part in the process of designing new proximal methods. In this paper, we present a viscosity-approximation-based proximal gradient algorithm and prove its linear convergence rate. We also present its accelerated variant and discuss the condition for the improved convergence rate. These algorithms are applied to solve the problem of multiclass image classification problem. CIFAR10, a popular publicly available benchmark real image classification dataset is used to experimentally validate our theoretical proofs, and the classification performances are compared with that of the state-of-the-art algorithms. To the best of our knowledge, it is the first time that the viscosity-approximation concept is applied to a multiclass classification problem. |
| Author | Verma, Mridula Jain, Prayas Shukla, K.K |
| Author_xml | – sequence: 1 givenname: Prayas surname: Jain fullname: Jain, Prayas organization: Indian Institute of Technology (BHU),Varanasi – sequence: 2 givenname: Mridula surname: Verma fullname: Verma, Mridula organization: Institute for Development and Research in Banking Technology (IDRBT),Hyderabad – sequence: 3 givenname: K.K surname: Shukla fullname: Shukla, K.K organization: Indian Institute of Technology (BHU),Varanasi |
| BookMark | eNotj81KAzEURqMo2FafwIV5gak3P5NMlsOgtVIqiLotmeROjbRJmQzivL0Vu_oWBw7nm5KLmCIScsdgzhiY--Vzs17LSkE558BhbjhoWaozMmWaV0wZrvQ5mXCmWCEl6CsyzfkLgAtjxISsmxS_sd9idEhf7YC0jnY35pBp6uhHyC7lMIy0Phz69BP2dggp0tZm9HTRWx8wDrTebVMfhs99viaXnd1lvDntjLw_Prw1T8XqZbFs6lUROIihcAjtX3OLyrdWc2dkJ5SwVoBzqFwpvFFGeGlZpbxurZNegymP3FRCODEjt__egIibQ38M68fN6bv4BeZWUdg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IJCNN48605.2020.9207456 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1728169267 9781728169262 |
| EISSN | 2161-4407 |
| EndPage | 6 |
| ExternalDocumentID | 9207456 |
| Genre | orig-research |
| GroupedDBID | 29I 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-ce0b4860be6dba72c94f363aa30cce6c53d9693d4a186d7bac4d7095a309833c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626021406099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:31:20 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-ce0b4860be6dba72c94f363aa30cce6c53d9693d4a186d7bac4d7095a309833c3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9207456 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-July |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of ... International Joint Conference on Neural Networks |
| PublicationTitleAbbrev | IJCNN |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023993 |
| Score | 1.7269654 |
| Snippet | Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Acceleration Approximation algorithms Benchmark testing Convergence Machine learning Minimization Viscosity |
| Title | Convergence Rate Analysis of Viscosity Approximation based Gradient Algorithms |
| URI | https://ieeexplore.ieee.org/document/9207456 |
| WOSCitedRecordID | wos000626021406099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3YhgdPUzfxNzl4tFuatElzHMP541CGqOw20iTVgq6j60T_e5O2mwhevIWEUpIQ3vcl730P4JIIrRkhvid9Lbwg8RNPCsU8JllozxdOiYwqswkex9FsJqYtuNpqYYwxFfnMDFyzesvXuVq7q7KhIBbwQtaGNues1mptkysHtA1_y8dieHc_jmNnsBTaHJDgQfPpLw-VCkIm3f_9fA_6P1o8NN2izD60zOIAuhszBtSczR7EY8cfr6SUBj3YCBJt6o2gPEXP2Uo5etYXGrki4p9ZrVhEDsQ0uikq4leJRm8veZGVr--rPjxNrh_Ht15jluBlBNPSUwYnbr6JYTqRnCgRpJRRKSlWyjAVUi2YoDqQfsQ0T6QKNLfxlR0XEaWKHkJnkS_MESCaMqK5IIxqG68QLgMjuTY2mMDa5rTiGHpueebLuh7GvFmZk7-7T2HX7UBNcT2DTlmszTnsqI8yWxUX1SZ-A0SWnjU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP2YU9DT1E38bQ4e7dYmbdocx3BuOsuQKbuNNEm1oKt0neh_b9J2E8GLt5BQShLC-77kve8BXGImJcXYsbgjmeVGTmRxJqhFOfX0-bJjzIPCbMIPw2A6ZeMaXK21MEqpgnym2qZZvOXLVCzNVVmHYQ14Ht2ATc91sV2qtdbplYHaisHl2KwzvO2FobFY8nQWiO129fEvF5UCRPqN__1-F1o_ajw0XuPMHtTUfB8aKzsGVJ3OJoQ9wyAvxJQKPegYEq0qjqA0Rk_JQhiC1hfqmjLin0mpWUQGxiS6yQrqV466r89pluQvb4sWPPavJ72BVdklWAm2SW4JZUdmvpGiMuI-FsyNCSWcE1sIRYVHJKOMSJc7AZV-xIUrfR1h6XEWECLIAdTn6VwdAiIxxdJnmBKpIxbsc1dxXyodTthSZ7XsCJpmeWbvZUWMWbUyx393X8D2YHI_mo2G4d0J7JjdKAmvp1DPs6U6gy3xkSeL7LzY0G-t_6F8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Convergence+Rate+Analysis+of+Viscosity+Approximation+based+Gradient+Algorithms&rft.au=Jain%2C+Prayas&rft.au=Verma%2C+Mridula&rft.au=Shukla%2C+K.K&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIJCNN48605.2020.9207456&rft.externalDocID=9207456 |