Convergence Rate Analysis of Viscosity Approximation based Gradient Algorithms

Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance. Convergence rate analysis is an essential part in the process of designing new proximal methods. In this paper, we present a viscosity-approxima...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ... International Joint Conference on Neural Networks s. 1 - 6
Hlavní autoři: Jain, Prayas, Verma, Mridula, Shukla, K.K
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2020
Témata:
ISSN:2161-4407
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance. Convergence rate analysis is an essential part in the process of designing new proximal methods. In this paper, we present a viscosity-approximation-based proximal gradient algorithm and prove its linear convergence rate. We also present its accelerated variant and discuss the condition for the improved convergence rate. These algorithms are applied to solve the problem of multiclass image classification problem. CIFAR10, a popular publicly available benchmark real image classification dataset is used to experimentally validate our theoretical proofs, and the classification performances are compared with that of the state-of-the-art algorithms. To the best of our knowledge, it is the first time that the viscosity-approximation concept is applied to a multiclass classification problem.
AbstractList Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance. Convergence rate analysis is an essential part in the process of designing new proximal methods. In this paper, we present a viscosity-approximation-based proximal gradient algorithm and prove its linear convergence rate. We also present its accelerated variant and discuss the condition for the improved convergence rate. These algorithms are applied to solve the problem of multiclass image classification problem. CIFAR10, a popular publicly available benchmark real image classification dataset is used to experimentally validate our theoretical proofs, and the classification performances are compared with that of the state-of-the-art algorithms. To the best of our knowledge, it is the first time that the viscosity-approximation concept is applied to a multiclass classification problem.
Author Verma, Mridula
Jain, Prayas
Shukla, K.K
Author_xml – sequence: 1
  givenname: Prayas
  surname: Jain
  fullname: Jain, Prayas
  organization: Indian Institute of Technology (BHU),Varanasi
– sequence: 2
  givenname: Mridula
  surname: Verma
  fullname: Verma, Mridula
  organization: Institute for Development and Research in Banking Technology (IDRBT),Hyderabad
– sequence: 3
  givenname: K.K
  surname: Shukla
  fullname: Shukla, K.K
  organization: Indian Institute of Technology (BHU),Varanasi
BookMark eNotj81KAzEURqMo2FafwIV5gak3P5NMlsOgtVIqiLotmeROjbRJmQzivL0Vu_oWBw7nm5KLmCIScsdgzhiY--Vzs17LSkE558BhbjhoWaozMmWaV0wZrvQ5mXCmWCEl6CsyzfkLgAtjxISsmxS_sd9idEhf7YC0jnY35pBp6uhHyC7lMIy0Phz69BP2dggp0tZm9HTRWx8wDrTebVMfhs99viaXnd1lvDntjLw_Prw1T8XqZbFs6lUROIihcAjtX3OLyrdWc2dkJ5SwVoBzqFwpvFFGeGlZpbxurZNegymP3FRCODEjt__egIibQ38M68fN6bv4BeZWUdg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN48605.2020.9207456
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728169267
9781728169262
EISSN 2161-4407
EndPage 6
ExternalDocumentID 9207456
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-ce0b4860be6dba72c94f363aa30cce6c53d9693d4a186d7bac4d7095a309833c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626021406099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:31:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ce0b4860be6dba72c94f363aa30cce6c53d9693d4a186d7bac4d7095a309833c3
PageCount 6
ParticipantIDs ieee_primary_9207456
PublicationCentury 2000
PublicationDate 2020-July
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationTitle Proceedings of ... International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
Score 1.7269654
Snippet Proximal Algorithms are known to be popular in solving non-smooth convex loss minimization framework due to their low iteration costs and good performance....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Acceleration
Approximation algorithms
Benchmark testing
Convergence
Machine learning
Minimization
Viscosity
Title Convergence Rate Analysis of Viscosity Approximation based Gradient Algorithms
URI https://ieeexplore.ieee.org/document/9207456
WOSCitedRecordID wos000626021406099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3YhgdPUzfxNzl4tFuatElzHMP541CGqOw20iTVgq6j60T_e5O2mwhevIWEUpIQ3vcl730P4JIIrRkhvid9Lbwg8RNPCsU8JllozxdOiYwqswkex9FsJqYtuNpqYYwxFfnMDFyzesvXuVq7q7KhIBbwQtaGNues1mptkysHtA1_y8dieHc_jmNnsBTaHJDgQfPpLw-VCkIm3f_9fA_6P1o8NN2izD60zOIAuhszBtSczR7EY8cfr6SUBj3YCBJt6o2gPEXP2Uo5etYXGrki4p9ZrVhEDsQ0uikq4leJRm8veZGVr--rPjxNrh_Ht15jluBlBNPSUwYnbr6JYTqRnCgRpJRRKSlWyjAVUi2YoDqQfsQ0T6QKNLfxlR0XEaWKHkJnkS_MESCaMqK5IIxqG68QLgMjuTY2mMDa5rTiGHpueebLuh7GvFmZk7-7T2HX7UBNcT2DTlmszTnsqI8yWxUX1SZ-A0SWnjU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP2YU9DT1E38bQ4e7dYmbdocx3BuOsuQKbuNNEm1oKt0neh_b9J2E8GLt5BQShLC-77kve8BXGImJcXYsbgjmeVGTmRxJqhFOfX0-bJjzIPCbMIPw2A6ZeMaXK21MEqpgnym2qZZvOXLVCzNVVmHYQ14Ht2ATc91sV2qtdbplYHaisHl2KwzvO2FobFY8nQWiO129fEvF5UCRPqN__1-F1o_ajw0XuPMHtTUfB8aKzsGVJ3OJoQ9wyAvxJQKPegYEq0qjqA0Rk_JQhiC1hfqmjLin0mpWUQGxiS6yQrqV466r89pluQvb4sWPPavJ72BVdklWAm2SW4JZUdmvpGiMuI-FsyNCSWcE1sIRYVHJKOMSJc7AZV-xIUrfR1h6XEWECLIAdTn6VwdAiIxxdJnmBKpIxbsc1dxXyodTthSZ7XsCJpmeWbvZUWMWbUyx393X8D2YHI_mo2G4d0J7JjdKAmvp1DPs6U6gy3xkSeL7LzY0G-t_6F8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+...+International+Joint+Conference+on+Neural+Networks&rft.atitle=Convergence+Rate+Analysis+of+Viscosity+Approximation+based+Gradient+Algorithms&rft.au=Jain%2C+Prayas&rft.au=Verma%2C+Mridula&rft.au=Shukla%2C+K.K&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2161-4407&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIJCNN48605.2020.9207456&rft.externalDocID=9207456