Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks

Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversari...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4307 - 4316
Main Authors: Dong, Yinpeng, Pang, Tianyu, Su, Hang, Zhu, Jun
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2019
Subjects:
ISSN:1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversarial attacks, many methods have been proposed to improve the robustness. Several state-of-the-art defenses are shown to be robust against transferable adversarial examples. In this paper, we propose a translation-invariant attack method to generate more transferable adversarial examples against the defense models. By optimizing a perturbation over an ensemble of translated images, the generated adversarial example is less sensitive to the white-box model being attacked and has better transferability. To improve the efficiency of attacks, we further show that our method can be implemented by convolving the gradient at the untranslated image with a pre-defined kernel. Our method is generally applicable to any gradient-based attack method. Extensive experiments on the ImageNet dataset validate the effectiveness of the proposed method. Our best attack fools eight state-of-the-art defenses at an 82% success rate on average based only on the transferability, demonstrating the insecurity of the current defense techniques.
AbstractList Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversarial attacks, many methods have been proposed to improve the robustness. Several state-of-the-art defenses are shown to be robust against transferable adversarial examples. In this paper, we propose a translation-invariant attack method to generate more transferable adversarial examples against the defense models. By optimizing a perturbation over an ensemble of translated images, the generated adversarial example is less sensitive to the white-box model being attacked and has better transferability. To improve the efficiency of attacks, we further show that our method can be implemented by convolving the gradient at the untranslated image with a pre-defined kernel. Our method is generally applicable to any gradient-based attack method. Extensive experiments on the ImageNet dataset validate the effectiveness of the proposed method. Our best attack fools eight state-of-the-art defenses at an 82% success rate on average based only on the transferability, demonstrating the insecurity of the current defense techniques.
Author Dong, Yinpeng
Zhu, Jun
Su, Hang
Pang, Tianyu
Author_xml – sequence: 1
  givenname: Yinpeng
  surname: Dong
  fullname: Dong, Yinpeng
  organization: Tsinghua Univ
– sequence: 2
  givenname: Tianyu
  surname: Pang
  fullname: Pang, Tianyu
  organization: Tsinghua Univ
– sequence: 3
  givenname: Hang
  surname: Su
  fullname: Su, Hang
  organization: Tsinghua Univiersity
– sequence: 4
  givenname: Jun
  surname: Zhu
  fullname: Zhu, Jun
  organization: Tsinghua Univ
BookMark eNotzEFLwzAYgOEoCs7Zswcv_QOt35ekTXIcc9PBQJGy60iaL1LtstGU4f69yjy9l4f3ll3FfSTG7hFKRDCP883be8kBTQkgpbxgmVEaFdcouBH6kk0QalHUBs0Ny1L6BADBEWujJ2yzOFrfxY_8iQLFRCkf93kz2JgCDdb1lM_8kYZkh872-eLb7g79L3KnM-rt2O1jsYrHPxDHfDaOtv1Kd-w62D5R9t8pa5aLZv5SrF-fV_PZuug4iLFofQCjCCoKlVfBKg6V4TK0nDjVTimnW_StQ3COhMBgpJdKAPcaaynElD2ctx0RbQ9Dt7PDaatNJSSvxA_zQ1Pi
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00444
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 4316
ExternalDocumentID 8953425
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-cdf097e05ef5d7fa7205924fc2e2e6b77b8c1dcb10bbe331f94d47302d816433
IEDL.DBID RIE
ISICitedReferencesCount 693
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529484004050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 07:44:55 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-cdf097e05ef5d7fa7205924fc2e2e6b77b8c1dcb10bbe331f94d47302d816433
PageCount 10
ParticipantIDs ieee_primary_8953425
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6493142
Snippet Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of...
SourceID ieee
SourceType Publisher
StartPage 4307
SubjectTerms Categorization
Codes
Computational modeling
Computer vision
Deep learning
Glass box
Kernel
Pattern recognition
Perturbation methods
Recognition: Detection
Retrieval
Robustness
Security
Title Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
URI https://ieeexplore.ieee.org/document/8953425
WOSCitedRecordID wos000529484004050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eCpaiu-ycGjsbt5bJKj1BYFKUVK6a1skgn0spXuKvrvTXaXiuDFWwhDApMZ5pH5ZhC69Zk2SntBpANHuNOG5Kk0RGUCRBZCElrnO5YvcjZTq5Wed9DdHgsDAHXxGdzHZf2X77b2PabKRkoLFmSsi7pSygartc-nsBDJZFq13XvSRI_Gy_lrrN2KDSk557_Gp9TWY9r_371HaPgDw8PzvYE5Rh0oTlC_9Rtxq5XlAC2DOxwp8CP4EJVCiastro1QOCVCo3A9drnMo7DhyWceOwKX2Hw1RE01HHkuPiJBUeGHqorI-yFaTCeL8RNp5yWQDU1YRazziZaQCPDCSZ9LGnwnyr2lQCEzUhplU2dNmhgDjKVec8eDhlOnQtDE2CnqFdsCzhA2TBhhjaYqtRxklhuXGx54rI1Orc7P0SByaf3WdMRYtwy6-Hv7Eh3GZ2gKrK5Qr9q9wzU6sB_Vptzd1M_4DSp3oIM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61Cnqq2opvc_Bo7G4em81RtKXFWoqU0lvZJLPQy1a626L_3mR3qQhevIUwJDCZYR6Zbwah-zRSOlapINKCJdwqTZJQahJHAkTkQhJa5jtmIzkex_O5mjTQww4LAwBl8Rk8-mX5l29XZuNTZd1YCeZkbA_tC85pWKG1dhkV5mKZSMV1_54wUN3n2eTdV2_5lpSc818DVEr70W_97-Zj1PkB4uHJzsScoAZkp6hVe4641su8jWbOIfYU-AVSF5dCjosVLs2QO8WDo3A5eDlPvLjh3mfiewLnWH9VRFU9HBlmW0-QFfipKDz2voOm_d70eUDqiQlkSQNWEGPTQEkIBKTCyjSR1HlPlKeGAoVIS6ljE1qjw0BrYCxMFbfc6Ti1sQubGDtDzWyVwTnCmgktjFY0Dg0HGSXaJpo7HiutQqOSC9T2XFp8VD0xFjWDLv_evkOHg-nbaDEajl-v0JF_kqrc6ho1i_UGbtCB2RbLfH1bPuk3sDyjyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Evading+Defenses+to+Transferable+Adversarial+Examples+by+Translation-Invariant+Attacks&rft.au=Dong%2C+Yinpeng&rft.au=Pang%2C+Tianyu&rft.au=Su%2C+Hang&rft.au=Zhu%2C+Jun&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4307&rft.epage=4316&rft_id=info:doi/10.1109%2FCVPR.2019.00444&rft.externalDocID=8953425