Application of sparse identification of nonlinear dynamics for physics-informed learning

Advances in machine learning and deep neural networks have enabled complex engineering tasks like image recognition, anomaly detection, regression, and multi-objective optimization, to name but a few. The complexity of the algorithm architecture, e.g., the number of hidden layers in a deep neural ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 IEEE Aerospace Conference s. 1 - 8
Hlavní autor: Corbetta, Matteo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.03.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Advances in machine learning and deep neural networks have enabled complex engineering tasks like image recognition, anomaly detection, regression, and multi-objective optimization, to name but a few. The complexity of the algorithm architecture, e.g., the number of hidden layers in a deep neural network, typically grows with the complexity of the problems they are required to solve, leaving little room for interpreting (or explaining) the path that results in a specific solution. This drawback is particularly relevant for autonomous aerospace and aviation systems, where certifications require a complete understanding of the algorithm behavior in all possible scenarios. Including physics knowledge in such data-driven tools may improve the interpretability of the algorithms, thus enhancing model validation against events with low probability but relevant for system certification. Such events include, for example, spacecraft or aircraft sub-system failures, for which data may not be available in the training phase. This paper investigates a recent physics-informed learning algorithm for identification of system dynamics, and shows how the governing equations of a system can be extracted from data using sparse regression. The learned relationships can be utilized as a surrogate model which, unlike typical data-driven surrogate models, relies on the learned underlying dynamics of the system rather than large number of fitting parameters. The work shows that the algorithm can reconstruct the differential equations underlying the observed dynamics using a single trajectory when no uncertainty is involved. However, the training set size must increase when dealing with stochastic systems, e.g., nonlinear dynamics with random initial conditions.
AbstractList Advances in machine learning and deep neural networks have enabled complex engineering tasks like image recognition, anomaly detection, regression, and multi-objective optimization, to name but a few. The complexity of the algorithm architecture, e.g., the number of hidden layers in a deep neural network, typically grows with the complexity of the problems they are required to solve, leaving little room for interpreting (or explaining) the path that results in a specific solution. This drawback is particularly relevant for autonomous aerospace and aviation systems, where certifications require a complete understanding of the algorithm behavior in all possible scenarios. Including physics knowledge in such data-driven tools may improve the interpretability of the algorithms, thus enhancing model validation against events with low probability but relevant for system certification. Such events include, for example, spacecraft or aircraft sub-system failures, for which data may not be available in the training phase. This paper investigates a recent physics-informed learning algorithm for identification of system dynamics, and shows how the governing equations of a system can be extracted from data using sparse regression. The learned relationships can be utilized as a surrogate model which, unlike typical data-driven surrogate models, relies on the learned underlying dynamics of the system rather than large number of fitting parameters. The work shows that the algorithm can reconstruct the differential equations underlying the observed dynamics using a single trajectory when no uncertainty is involved. However, the training set size must increase when dealing with stochastic systems, e.g., nonlinear dynamics with random initial conditions.
Author Corbetta, Matteo
Author_xml – sequence: 1
  givenname: Matteo
  surname: Corbetta
  fullname: Corbetta, Matteo
  organization: SGT Inc., NASA Ames Research Center,Moffett Field,CA,94035
BookMark eNpNT7tqwzAUVaEZ2jRfECj6AbtX15ZljSakDwgESoZuQdajvWDLxvbiv6-gGTqdJwfOI7uPQ_SMPQvIhQD90hw_z6VClDkCQq6FwqKu7thOqzrxWqAqSvXAvppx7MiahYbIh8Dn0Uyz5-R8XCj8C9J-R9Gbibs1mp7szMMw8fFnnRPPKCbVe8e7VIkUv5_YJphu9rsbbtnl9Xg5vGen89vHoTllhFAsmW0DCG0lBqjqUgdQLWqXHN_aUDrphFStqBUIqa11lZJWWYPKIFSgsdiy_d8see-v40S9mdbr7W7xC7joUR0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AERO47225.2020.9172386
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728127347
1728127343
EndPage 8
ExternalDocumentID 9172386
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-cbf019c52f06849f07b29d19cebcf4d5d157b1870159ccd675c7ca27a2060923
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681699101058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 06 17:59:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-cbf019c52f06849f07b29d19cebcf4d5d157b1870159ccd675c7ca27a2060923
PageCount 8
ParticipantIDs ieee_primary_9172386
PublicationCentury 2000
PublicationDate 2020-March
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-March
PublicationDecade 2020
PublicationTitle 2020 IEEE Aerospace Conference
PublicationTitleAbbrev AERO
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.238922
Snippet Advances in machine learning and deep neural networks have enabled complex engineering tasks like image recognition, anomaly detection, regression, and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Aerodynamics
Bayes methods
Heuristic algorithms
Libraries
Machine learning
Machine learning algorithms
Mathematical models
Nonlinear dynamical systems
System dynamics
Trajectory
Title Application of sparse identification of nonlinear dynamics for physics-informed learning
URI https://ieeexplore.ieee.org/document/9172386
WOSCitedRecordID wos000681699101058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFTW5LSNxo6VomsWJI9hpLQKQ0lg7egZ8mSFDvp7-_ZMg6FLt2EJJA4cbrvpLv7AJ6llkEFLqlwQtNUe1QpZgKdChPEVCZB2Eg2oZbLrCjyVQ9eulwY730TfObHdbP5y3d7e6yfyiboWqCFkX3oKyVjrlab9JuwfDKbf7zXpQ8Fen2cjdvJv1hTGqOxuPjfcpcwOmXfkVVnV66g53dDKGann2ayDwQvgrLyZOvaaJ9uYBdrX-iSuEg2XxHEpSS-YFQ0Fkr1jrR0EZ8jWC_m69c32rIi0C1n0wO1JiAss4IHJrM0D0wZnjvs8caG1AmXCGUSVEMEKtY6dAissporzZlkCOeuYYA78TdAGGIR7WqiIi1SZ3zGjXN55nnQPE84u4VhLZTNV6x7sWnlcfd39z2c13KP8VkPMDiUR_8IZ_b7sK3Kp-awfgC5bJlP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf9uDRQrdsu7tHYiAYEYnhwI30abiA2QV_v7PbDcTEi7embdJmmna-6Tw-gEeppE88l1RYoWisHF4ppj3tCe1FT0ZemEA2kUwm6XyeTRvwtMuFcc5VwWeuUzYrX75dm235VdZF0wI1jDyAQxHHnIVsrTrtN2JZtz_4eC-LHwq0-zjr1NN_8aZUamN4-r8Fz6C9z78j051mOYeGW7Vg3t_7msnaE3wK8sKRpa3jfXYDq1D9QuXEBrr5giAyJeEPo6ChVKqzpCaM-GzDbDiYPY9ozYtAl5z1NtRoj8DMCO6ZTOPMs0TzzGKP08bHVthIJDrCi4hQxRiLJoFJjOKJ4kwyBHQX0MSduEsgDNGIsiVVkRKx1S7l2tosddwrnkWcXUGrFMriK1S-WNTyuP67-wGOR7O38WL8Mnm9gZPyDEK01i00N_nW3cGR-d4si_y-Orgf4GOclg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+Aerospace+Conference&rft.atitle=Application+of+sparse+identification+of+nonlinear+dynamics+for+physics-informed+learning&rft.au=Corbetta%2C+Matteo&rft.date=2020-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FAERO47225.2020.9172386&rft.externalDocID=9172386