ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Universal style transfer retains styles from reference images in content images. While existing methods have achieved state-of-the-art style transfer performance, they are not aware of the content leak phenomenon that the image content may corrupt after several rounds of stylization process. In this...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 862 - 871 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2021
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!