ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows

Universal style transfer retains styles from reference images in content images. While existing methods have achieved state-of-the-art style transfer performance, they are not aware of the content leak phenomenon that the image content may corrupt after several rounds of stylization process. In this...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 862 - 871
Hlavní autori: An, Jie, Huang, Siyu, Song, Yibing, Dou, Dejing, Liu, Wei, Luo, Jiebo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2021
Predmet:
ISSN:1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Universal style transfer retains styles from reference images in content images. While existing methods have achieved state-of-the-art style transfer performance, they are not aware of the content leak phenomenon that the image content may corrupt after several rounds of stylization process. In this paper, we propose ArtFlow to prevent content leak during universal style transfer. ArtFlow consists of reversible neural flows and an unbiased feature transfer module. It supports both forward and backward inferences and operates in a projection-transfer-reversion scheme. The forward inference projects input images into deep features, while the backward inference remaps deep features back to input images in a lossless and unbiased way. Extensive experiments demonstrate that ArtFlow achieves comparable performance to state-of-the-art style transfer methods while avoiding content leak.
ISSN:1063-6919
DOI:10.1109/CVPR46437.2021.00092