pPython for Parallel Python Programming
pPython seeks to provide a parallel capability that provides good speed-up without sacrificing the ease of programming in Python by implementing partitioned global array semantics (PGAS) on top of a simple file-based messaging library (PythonMPI) in pure Python. The core data structure in pPython is...
Saved in:
| Published in: | IEEE Conference on High Performance Extreme Computing (Online) pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
19.09.2022
|
| Subjects: | |
| ISSN: | 2643-1971 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | pPython seeks to provide a parallel capability that provides good speed-up without sacrificing the ease of programming in Python by implementing partitioned global array semantics (PGAS) on top of a simple file-based messaging library (PythonMPI) in pure Python. The core data structure in pPython is a distributed numerical array whose distribution onto multiple processors is specified with a 'map' construct. Communication operations between distributed arrays are abstracted away from the user and pPython transparently supports redistribution between any block-cyclic-overlapped distributions in up to four dimensions. pPython follows a SPMD (single program multiple data) model of computation. pPython runs on any combination of heterogeneous systems that support Python, including Windows, Linux, and MacOS operating systems. In addition to running transparently on single-node (e.g., a laptop), pPython provides a scheduler interface, so that pPython can be executed in a massively parallel computing environment. The initial implementation uses the Slurm scheduler. Performance of pPython on the HPC Challenge benchmark suite demonstrates both ease of programming and scalability. |
|---|---|
| AbstractList | pPython seeks to provide a parallel capability that provides good speed-up without sacrificing the ease of programming in Python by implementing partitioned global array semantics (PGAS) on top of a simple file-based messaging library (PythonMPI) in pure Python. The core data structure in pPython is a distributed numerical array whose distribution onto multiple processors is specified with a 'map' construct. Communication operations between distributed arrays are abstracted away from the user and pPython transparently supports redistribution between any block-cyclic-overlapped distributions in up to four dimensions. pPython follows a SPMD (single program multiple data) model of computation. pPython runs on any combination of heterogeneous systems that support Python, including Windows, Linux, and MacOS operating systems. In addition to running transparently on single-node (e.g., a laptop), pPython provides a scheduler interface, so that pPython can be executed in a massively parallel computing environment. The initial implementation uses the Slurm scheduler. Performance of pPython on the HPC Challenge benchmark suite demonstrates both ease of programming and scalability. |
| Author | Prout, Andrew Gadepally, Vijay Jananthan, Hayden Klein, Anna Morales, Guillermo Houle, Michael Bergeron, Bill Byun, Chansup Arcand, William Hubbell, Matthew Keville, Kurt Reuther, Albert Jones, Michael Mullen, Julie Michaleas, Peter Kepner, Jeremy Milechin, Lauren Yee, Charles Bestor, David Rosa, Antonio Samsi, Siddharth |
| Author_xml | – sequence: 1 givenname: Chansup surname: Byun fullname: Byun, Chansup organization: Massachusetts Institute of Technology – sequence: 2 givenname: William surname: Arcand fullname: Arcand, William organization: Massachusetts Institute of Technology – sequence: 3 givenname: David surname: Bestor fullname: Bestor, David organization: Massachusetts Institute of Technology – sequence: 4 givenname: Bill surname: Bergeron fullname: Bergeron, Bill organization: Massachusetts Institute of Technology – sequence: 5 givenname: Vijay surname: Gadepally fullname: Gadepally, Vijay organization: Massachusetts Institute of Technology – sequence: 6 givenname: Michael surname: Houle fullname: Houle, Michael organization: Massachusetts Institute of Technology – sequence: 7 givenname: Matthew surname: Hubbell fullname: Hubbell, Matthew organization: Massachusetts Institute of Technology – sequence: 8 givenname: Hayden surname: Jananthan fullname: Jananthan, Hayden organization: Massachusetts Institute of Technology – sequence: 9 givenname: Michael surname: Jones fullname: Jones, Michael organization: Massachusetts Institute of Technology – sequence: 10 givenname: Kurt surname: Keville fullname: Keville, Kurt organization: Massachusetts Institute of Technology – sequence: 11 givenname: Anna surname: Klein fullname: Klein, Anna organization: Massachusetts Institute of Technology – sequence: 12 givenname: Peter surname: Michaleas fullname: Michaleas, Peter organization: Massachusetts Institute of Technology – sequence: 13 givenname: Lauren surname: Milechin fullname: Milechin, Lauren organization: Massachusetts Institute of Technology – sequence: 14 givenname: Guillermo surname: Morales fullname: Morales, Guillermo organization: Massachusetts Institute of Technology – sequence: 15 givenname: Julie surname: Mullen fullname: Mullen, Julie organization: Massachusetts Institute of Technology – sequence: 16 givenname: Andrew surname: Prout fullname: Prout, Andrew organization: Massachusetts Institute of Technology – sequence: 17 givenname: Albert surname: Reuther fullname: Reuther, Albert organization: Massachusetts Institute of Technology – sequence: 18 givenname: Antonio surname: Rosa fullname: Rosa, Antonio organization: Massachusetts Institute of Technology – sequence: 19 givenname: Siddharth surname: Samsi fullname: Samsi, Siddharth organization: Massachusetts Institute of Technology – sequence: 20 givenname: Charles surname: Yee fullname: Yee, Charles organization: Massachusetts Institute of Technology – sequence: 21 givenname: Jeremy surname: Kepner fullname: Kepner, Jeremy organization: Massachusetts Institute of Technology |
| BookMark | eNotj0tLw0AUhUepYFv7CwTJzlXi3Hvn0VlKaK1QMIu6LvNqjeRRJt303xswi8OBb3E434LNur6LjL0ALwC4edtVm1LKNUKBHLEwBhUpeccWoJQURq-VumdzVIJyMBoe2WoYfjnnRMg10Zy9Xqrb9afvslOfssom2zSxySZWpf6cbNvW3fmJPZxsM8TV1Ev2vd0cyl2-__r4LN_3eY2crrk3XkgHfjyjggjOWuE0eQ9AkRwQej2CMeBxFABHFjW5ABAMD0rTkj3_79YxxuMl1a1Nt-PkRX-Nd0LM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/HPEC55821.2022.9926365 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1665497866 9781665497862 |
| EISSN | 2643-1971 |
| EndPage | 6 |
| ExternalDocumentID | 9926365 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-c9c45b1c0226d4dbaa4b73cc113e3b132c74b774b1c21101b3a273bd11d90d673 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890048500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:07:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c9c45b1c0226d4dbaa4b73cc113e3b132c74b774b1c21101b3a273bd11d90d673 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9926365 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept.-19 |
| PublicationDateYYYYMMDD | 2022-09-19 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Conference on High Performance Extreme Computing (Online) |
| PublicationTitleAbbrev | HPEC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003320733 |
| Score | 1.8698062 |
| Snippet | pPython seeks to provide a parallel capability that provides good speed-up without sacrificing the ease of programming in Python by implementing partitioned... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Linux MPI Operating systems Parallel Programming PGAS Portable computers Program processors Programming Python Scalability Semantics |
| Title | pPython for Parallel Python Programming |
| URI | https://ieeexplore.ieee.org/document/9926365 |
| WOSCitedRecordID | wos000890048500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFT2ialbzwUutSJHpZkzSEhU_DQQraglyHQOsF1Av33lWzXpdClg4U5kMRJiNOd7rsP4DHnLEdEpzFyNokTY02oAcl94yjTmknpkppsQqxW6Xotsx48d1gY51ydfOYm4bd-y7c7cwihsqmUhFPO-tAXgjdYrS6eQikJ_IMtCBgjOV1m8xkLOFDvBRIyaTv_YlGpjchi-L_pz2D8g8aLss7OnEPPFRcw_KZjiNrTOYKnffYZKgFE_h4aZaoMLClvUSvLmjysdz_CGF4X85fZMm55EOItQbSKjTQJ09h4LbhNrFYq0YIag0MEU3t30ggv8B82wZ3Dmip_KdEWYyuR5YJewqDYFe4KIoY0JZjLVFhvvnKjkFNMc6eUP31W5dcwCnpv9k2pi02r8s3f4ls4DUsb0iewvINBVR7cPZyYY7X9KB_q_fkCzLKQVw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfRUtZX63oPgxW3z2GSbc2mpWMseKvRW8loo6LbUVvDfm2zjiuDFw4ZlICGTECYzmW8-gLucsxwR1YuRNUmcaKN9DUjuGkuZUkwIm5RkE-lk0pvNRFaDhwoLY60tk89sx_-Wb_lmqbc-VNYVgnDK2R7se-asgNaqIiqUEs9AGGDAGInuKBv0mUeCOj-QkE7o_otHpTQjw8b_JnAMrR88XpRVluYEarY4hcY3IUMUzmcT7lfZp68FELmbaJTJtedJeY2CLNtlYr25EVrwMhxM-6M4MCHEC4LoJtZCJ0xh7bTgJjFKykSlVGvsY5jKOZQ6dQL3Ye0dOqyodNcSZTA2Ahme0jOoF8vCtiFiSFGCueilxhmwXEtkJVPcSunOn5H5OTS93vPVrtjFPKh88bf4Fg5H0-fxfPw4ebqEI7_MPpkCiyuob9Zbew0H-mOzeF_flHv1BYWzk6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Conference+on+High+Performance+Extreme+Computing+%28Online%29&rft.atitle=pPython+for+Parallel+Python+Programming&rft.au=Byun%2C+Chansup&rft.au=Arcand%2C+William&rft.au=Bestor%2C+David&rft.au=Bergeron%2C+Bill&rft.date=2022-09-19&rft.pub=IEEE&rft.eissn=2643-1971&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FHPEC55821.2022.9926365&rft.externalDocID=9926365 |