A Differential Evolution Algorithm with Adaptive Strategies for Constrained Optimization Problem

Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as too tight constraints, it is difficult to obtain the global optimal solution to these problems. In this manuscript, an improved differential ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 16th International Conference on Computational Intelligence and Security (CIS) S. 264 - 268
Hauptverfasser: Wanma, Cuo, Li, Hecheng, Song, Erping
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2020
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as too tight constraints, it is difficult to obtain the global optimal solution to these problems. In this manuscript, an improved differential evolutionary algorithm is proposed from the perspective of operator design and constraint handling. Firstly, in order to enhance the exploration ability of the algorithm, a heuristic mutation operator with better point information is constructed. Secondly, an improved dynamic epsilon constraint handling method is developed, in which the value of the epsilon decreases as the iteration number increases. The method can increase effectively the feasible individual in populations. Finally, the simulation results on 10 benchmark functions show that the proposed algorithm is effective and robust when compared with similar algorithms.
AbstractList Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as too tight constraints, it is difficult to obtain the global optimal solution to these problems. In this manuscript, an improved differential evolutionary algorithm is proposed from the perspective of operator design and constraint handling. Firstly, in order to enhance the exploration ability of the algorithm, a heuristic mutation operator with better point information is constructed. Secondly, an improved dynamic epsilon constraint handling method is developed, in which the value of the epsilon decreases as the iteration number increases. The method can increase effectively the feasible individual in populations. Finally, the simulation results on 10 benchmark functions show that the proposed algorithm is effective and robust when compared with similar algorithms.
Author Li, Hecheng
Wanma, Cuo
Song, Erping
Author_xml – sequence: 1
  givenname: Cuo
  surname: Wanma
  fullname: Wanma, Cuo
  email: 2083377159@qq.com
  organization: School of Mathematics and Statistics, Qinghai Normal University,Xining,China,810016
– sequence: 2
  givenname: Hecheng
  surname: Li
  fullname: Li, Hecheng
  email: lihecheng@qhnu.edu.cn
  organization: School of Mathematics and Statistics, Qinghai Normal University,Xining,China,810016
– sequence: 3
  givenname: Erping
  surname: Song
  fullname: Song, Erping
  email: 18297116242@qq.com
  organization: School of Computer Science and Technology, Qinghai Normal University,Xining,China,810016
BookMark eNotjEFOwzAURI0ECyg9QTe-QMKP7TjOMgoFKlUqUmFdnPi7WErsyjFFcHoiYDOjeZqZG3Lpg0dCVgXkRQH1XbvZlwykzBkwyAFA8guyrCtVSFkKEKKsrslbQ--dtRjRJ6cHuj6H4SO54GkzHEN06X2kn7PSxuhTcmek-xR1wqPDidoQaRv8NBPn0dDd3Bjdt_7dP8fQDTjekiurhwmX_74grw_rl_Yp2-4eN22zzRwDnrJeKax77ARnqObAWV92zBhlhbTY6RIM9MBNxUWnjbSmrntujVRWF6As4wuy-vt1iHg4RTfq-HWoBVRcMv4DHCdUdQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIS52066.2020.00063
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665404457
1665404450
EndPage 268
ExternalDocumentID 9407362
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Qinghai Province
  grantid: 2018-ZJ-901
  funderid: 10.13039/501100012579
– fundername: National Natural Science Foundation of China
  grantid: 61966030,11661067
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-c88e9ceb432e8c8832c5b2dd8f46feba50d0c03d734bad6fd99c3fd68fa108f23
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672824900055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:53 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c88e9ceb432e8c8832c5b2dd8f46feba50d0c03d734bad6fd99c3fd68fa108f23
PageCount 5
ParticipantIDs ieee_primary_9407362
PublicationCentury 2000
PublicationDate 2020-Nov.
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationTitle 2020 16th International Conference on Computational Intelligence and Security (CIS)
PublicationTitleAbbrev CIS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7387699
Snippet Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as...
SourceID ieee
SourceType Publisher
StartPage 264
SubjectTerms Benchmark testing
Complexity theory
Constrained optimization problem
Constraint handling
Constraint handling technique
Differential evolution algorithm
Evolutionary computation
Heuristic algorithms
Optimal solutions
Simulation
Sociology
Title A Differential Evolution Algorithm with Adaptive Strategies for Constrained Optimization Problem
URI https://ieeexplore.ieee.org/document/9407362
WOSCitedRecordID wos000672824900055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa18eBJTWt8h4NH17LA7rLHprbRS22iJr1VYAZtUtumr98v0LV68OINCAnJ8BgG5vs-Qm78lVoHIqekyIElUvE00U6qRFvvTVFrC8JEsYmi31fDYTmokdsdFgYRY_IZ3oVi_MuHmV2Hp7JW6aOPeODuFUWxxWpVREIpK1udx-cskJP7oI-HfC0WqD1_SaZEj9E7_N9YR6T5A72jg51TOSY1nDbIW5veV0ImfkNOaHdTLRjanrzPfHj_8UnDgyptg56H84t-k87ikvpbKQ2ynFEMAoE--R6fFfoyDBX0ZJrktdd96TwklTRCMuZMrBKrFJYWjRQcla8IbjPDAZSTuUOjMwbMMgGFkEZD7qAsrXCQK6dTphwXJ6Q-nU3xlFAwWQrIA1TfSePjDauKUmeGKQned5sz0gjWGc237BejyjDnfzdfkINg_i1a75LUV4s1XpF9u1mNl4vrOGVfpyycEg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImuhJDRjf9uDRlW7b3e0eCUIgIpKICTfsY6okwBJev992WdGDF29t02SSvmam7fd9CN25kFp6IqcgiQ0JuKBhIC0XgdTOm4KU2jCVi00kvZ4YDtN-Cd3vsDAAkH8-gwdfzN_yTabX_qqslrrsIz9w9yLOabhFaxVUQiFJa43Oa-TpyV3aR_2PLeLJPX-JpuQ-o3X0P2vHqPoDvsP9nVs5QSWYVdB7HT8WUiZuS05wc1MsGVyffGQuwf-cYn-liutGzv0Jhr9pZ2GJXVyKvTBnLgcBBr-4HtMCf-lNeUWZKnprNQeNdlCIIwRjStgq0EJAqkFxRkG4CqM6UtQYYXlsQcmIGKIJMwnjSprYmjTVzJpYWBkSYSk7ReVZNoMzhI2KQgPUg_UtVy7j0CJJZaSI4MZ5b3WOKn50RvMt_8WoGJiLv5tv0UF78NwddTu9p0t06Kdii927QuXVYg3XaF9vVuPl4iafvi_w1Z9Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+16th+International+Conference+on+Computational+Intelligence+and+Security+%28CIS%29&rft.atitle=A+Differential+Evolution+Algorithm+with+Adaptive+Strategies+for+Constrained+Optimization+Problem&rft.au=Wanma%2C+Cuo&rft.au=Li%2C+Hecheng&rft.au=Song%2C+Erping&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=264&rft.epage=268&rft_id=info:doi/10.1109%2FCIS52066.2020.00063&rft.externalDocID=9407362