A Differential Evolution Algorithm with Adaptive Strategies for Constrained Optimization Problem
Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as too tight constraints, it is difficult to obtain the global optimal solution to these problems. In this manuscript, an improved differential ev...
Gespeichert in:
| Veröffentlicht in: | 2020 16th International Conference on Computational Intelligence and Security (CIS) S. 264 - 268 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as too tight constraints, it is difficult to obtain the global optimal solution to these problems. In this manuscript, an improved differential evolutionary algorithm is proposed from the perspective of operator design and constraint handling. Firstly, in order to enhance the exploration ability of the algorithm, a heuristic mutation operator with better point information is constructed. Secondly, an improved dynamic epsilon constraint handling method is developed, in which the value of the epsilon decreases as the iteration number increases. The method can increase effectively the feasible individual in populations. Finally, the simulation results on 10 benchmark functions show that the proposed algorithm is effective and robust when compared with similar algorithms. |
|---|---|
| AbstractList | Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as too tight constraints, it is difficult to obtain the global optimal solution to these problems. In this manuscript, an improved differential evolutionary algorithm is proposed from the perspective of operator design and constraint handling. Firstly, in order to enhance the exploration ability of the algorithm, a heuristic mutation operator with better point information is constructed. Secondly, an improved dynamic epsilon constraint handling method is developed, in which the value of the epsilon decreases as the iteration number increases. The method can increase effectively the feasible individual in populations. Finally, the simulation results on 10 benchmark functions show that the proposed algorithm is effective and robust when compared with similar algorithms. |
| Author | Li, Hecheng Wanma, Cuo Song, Erping |
| Author_xml | – sequence: 1 givenname: Cuo surname: Wanma fullname: Wanma, Cuo email: 2083377159@qq.com organization: School of Mathematics and Statistics, Qinghai Normal University,Xining,China,810016 – sequence: 2 givenname: Hecheng surname: Li fullname: Li, Hecheng email: lihecheng@qhnu.edu.cn organization: School of Mathematics and Statistics, Qinghai Normal University,Xining,China,810016 – sequence: 3 givenname: Erping surname: Song fullname: Song, Erping email: 18297116242@qq.com organization: School of Computer Science and Technology, Qinghai Normal University,Xining,China,810016 |
| BookMark | eNotjEFOwzAURI0ECyg9QTe-QMKP7TjOMgoFKlUqUmFdnPi7WErsyjFFcHoiYDOjeZqZG3Lpg0dCVgXkRQH1XbvZlwykzBkwyAFA8guyrCtVSFkKEKKsrslbQ--dtRjRJ6cHuj6H4SO54GkzHEN06X2kn7PSxuhTcmek-xR1wqPDidoQaRv8NBPn0dDd3Bjdt_7dP8fQDTjekiurhwmX_74grw_rl_Yp2-4eN22zzRwDnrJeKax77ARnqObAWV92zBhlhbTY6RIM9MBNxUWnjbSmrntujVRWF6As4wuy-vt1iHg4RTfq-HWoBVRcMv4DHCdUdQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CIS52066.2020.00063 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Libary (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665404457 1665404450 |
| EndPage | 268 |
| ExternalDocumentID | 9407362 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Qinghai Province grantid: 2018-ZJ-901 funderid: 10.13039/501100012579 – fundername: National Natural Science Foundation of China grantid: 61966030,11661067 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-c88e9ceb432e8c8832c5b2dd8f46feba50d0c03d734bad6fd99c3fd68fa108f23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672824900055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:53 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c88e9ceb432e8c8832c5b2dd8f46feba50d0c03d734bad6fd99c3fd68fa108f23 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9407362 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov. |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 16th International Conference on Computational Intelligence and Security (CIS) |
| PublicationTitleAbbrev | CIS |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7387699 |
| Snippet | Constndned optimization problems are widely used in real-world applications as optimization models. Due to the complexity of the objective itself as well as... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 264 |
| SubjectTerms | Benchmark testing Complexity theory Constrained optimization problem Constraint handling Constraint handling technique Differential evolution algorithm Evolutionary computation Heuristic algorithms Optimal solutions Simulation Sociology |
| Title | A Differential Evolution Algorithm with Adaptive Strategies for Constrained Optimization Problem |
| URI | https://ieeexplore.ieee.org/document/9407362 |
| WOSCitedRecordID | wos000672824900055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa18eBJTWt8h4NH17LA7rLHprbRS22iJr1VYAZtUtumr98v0LV68OINCAnJ8BgG5vs-Qm78lVoHIqekyIElUvE00U6qRFvvTVFrC8JEsYmi31fDYTmokdsdFgYRY_IZ3oVi_MuHmV2Hp7JW6aOPeODuFUWxxWpVREIpK1udx-cskJP7oI-HfC0WqD1_SaZEj9E7_N9YR6T5A72jg51TOSY1nDbIW5veV0ImfkNOaHdTLRjanrzPfHj_8UnDgyptg56H84t-k87ikvpbKQ2ynFEMAoE--R6fFfoyDBX0ZJrktdd96TwklTRCMuZMrBKrFJYWjRQcla8IbjPDAZSTuUOjMwbMMgGFkEZD7qAsrXCQK6dTphwXJ6Q-nU3xlFAwWQrIA1TfSePjDauKUmeGKQned5sz0gjWGc237BejyjDnfzdfkINg_i1a75LUV4s1XpF9u1mNl4vrOGVfpyycEg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImuhJDRjf9uDRlW7b3e0eCUIgIpKICTfsY6okwBJev992WdGDF29t02SSvmam7fd9CN25kFp6IqcgiQ0JuKBhIC0XgdTOm4KU2jCVi00kvZ4YDtN-Cd3vsDAAkH8-gwdfzN_yTabX_qqslrrsIz9w9yLOabhFaxVUQiFJa43Oa-TpyV3aR_2PLeLJPX-JpuQ-o3X0P2vHqPoDvsP9nVs5QSWYVdB7HT8WUiZuS05wc1MsGVyffGQuwf-cYn-liutGzv0Jhr9pZ2GJXVyKvTBnLgcBBr-4HtMCf-lNeUWZKnprNQeNdlCIIwRjStgq0EJAqkFxRkG4CqM6UtQYYXlsQcmIGKIJMwnjSprYmjTVzJpYWBkSYSk7ReVZNoMzhI2KQgPUg_UtVy7j0CJJZaSI4MZ5b3WOKn50RvMt_8WoGJiLv5tv0UF78NwddTu9p0t06Kdii927QuXVYg3XaF9vVuPl4iafvi_w1Z9Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+16th+International+Conference+on+Computational+Intelligence+and+Security+%28CIS%29&rft.atitle=A+Differential+Evolution+Algorithm+with+Adaptive+Strategies+for+Constrained+Optimization+Problem&rft.au=Wanma%2C+Cuo&rft.au=Li%2C+Hecheng&rft.au=Song%2C+Erping&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=264&rft.epage=268&rft_id=info:doi/10.1109%2FCIS52066.2020.00063&rft.externalDocID=9407362 |