Partial Order Pruning: For Best Speed/Accuracy Trade-Off in Neural Architecture Search

Achieving good speed and accuracy trade-off on a target platform is very important in deploying deep neural networks in real world scenarios. However, most existing automatic architecture search approaches only concentrate on high performance. In this work, we propose an algorithm that can offer bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 9137 - 9145
Hauptverfasser: Li, Xin, Zhou, Yiming, Pan, Zheng, Feng, Jiashi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2019
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Achieving good speed and accuracy trade-off on a target platform is very important in deploying deep neural networks in real world scenarios. However, most existing automatic architecture search approaches only concentrate on high performance. In this work, we propose an algorithm that can offer better speed/accuracy trade-off of searched networks, which is termed "Partial Order Pruning''. It prunes the architecture search space with a partial order assumption to automatically search for the architectures with the best speed and accuracy trade-off. Our algorithm explicitly takes profile information about the inference speed on the target platform into consideration. With the proposed algorithm, we present several Dongfeng (DF) networks that provide high accuracy and fast inference speed on various application GPU platforms. By further searching decoder architectures, our DF-Seg real-time segmentation networks yield state-of-the-art speed/accuracy trade-off on both the {target embedded device} and the high-end GPU.
AbstractList Achieving good speed and accuracy trade-off on a target platform is very important in deploying deep neural networks in real world scenarios. However, most existing automatic architecture search approaches only concentrate on high performance. In this work, we propose an algorithm that can offer better speed/accuracy trade-off of searched networks, which is termed "Partial Order Pruning''. It prunes the architecture search space with a partial order assumption to automatically search for the architectures with the best speed and accuracy trade-off. Our algorithm explicitly takes profile information about the inference speed on the target platform into consideration. With the proposed algorithm, we present several Dongfeng (DF) networks that provide high accuracy and fast inference speed on various application GPU platforms. By further searching decoder architectures, our DF-Seg real-time segmentation networks yield state-of-the-art speed/accuracy trade-off on both the {target embedded device} and the high-end GPU.
Author Feng, Jiashi
Pan, Zheng
Zhou, Yiming
Li, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: UISEE Technology
– sequence: 2
  givenname: Yiming
  surname: Zhou
  fullname: Zhou, Yiming
  organization: Univ. of Electrical Science and Technology of China
– sequence: 3
  givenname: Zheng
  surname: Pan
  fullname: Pan, Zheng
  organization: UISEE Company
– sequence: 4
  givenname: Jiashi
  surname: Feng
  fullname: Feng, Jiashi
  organization: NUS
BookMark eNotjE1PAjEUAKvRRETOHrz0Dyy812bbfd6QiJoQIYJcST_eag0upLsc-PeQ6Gkyc5hbcdXsGhbiHmGICDSarBcfQwVIQwDS5kIMyFZoVYVaka4uRQ_B6MIQ0o0YtO0PAGiFaKjqifXC5S65rZznyFku8qFJzdejnO6yfOK2k8s9cxyNQzhkF45ylV3kYl7XMjXync9xK8c5fKeOQ3fILJfsznonrmu3bXnwz774nD6vJq_FbP7yNhnPiqRAd0WwhhUqBAtUUvAclY4K2PtKeSyJyBlflrUHH6hE62Lto7LoAKwxodR98fD3Tcy82ef06_JxU1GpKyJ9Ag4sUmQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00936
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 9145
ExternalDocumentID 8953899
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-c76e2121070959cbed23d20ebb82b15999a6b55fb0bc9517adfbd271a00766c53
IEDL.DBID RIE
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542649302077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 10 07:40:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c76e2121070959cbed23d20ebb82b15999a6b55fb0bc9517adfbd271a00766c53
PageCount 9
ParticipantIDs ieee_primary_8953899
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5461874
Snippet Achieving good speed and accuracy trade-off on a target platform is very important in deploying deep neural networks in real world scenarios. However, most...
SourceID ieee
SourceType Publisher
StartPage 9137
SubjectTerms Accuracy
Computer architecture
Computer vision
Decoding
Deep Learning
Graphics processing units
Grouping and Shape
Inference algorithms
Network architecture
Neural architecture search
Pattern recognition
Real-time systems
Segmentation
Title Partial Order Pruning: For Best Speed/Accuracy Trade-Off in Neural Architecture Search
URI https://ieeexplore.ieee.org/document/8953899
WOSCitedRecordID wos000542649302077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eCpaiu-ycGjsfvKJvFWi8WDtIuP0lvJYwIF2ZZtV_Dfm-wutQcv3kIgCcyQzOSbmW8QupU2BWp1QFhiDEmM1kTGqSLOWUi0NFwKW2n6hU0mfD4XWQvd7WphAKBKPoN7P6xi-WalSw-VDbigng6ujdqMsbpWa4enxO4nkwresPeEgRiMZtmrz93yhJTCUzDvtU-prMe4-79zj1D_twwPZzsDc4xakJ-gbuM34uZWbnpolnn9y0889TyabknpwY4HPF4V-NG9-vht7bYYDLUuC6m_sbNPBsjUWrzMsWfncEuHewEFXOcg99HH-Ol99EyafglkGQXxlmiWQuQJwZgH97QCE8UmCkApHinntgghU0WpVYHSzrFi0lhlIhZKH45LNY1PUSdf5XCGMIeQSkq58s2pUxpyAzEHa5lMogjC5Bz1vJgW65oSY9FI6OLv6Ut06PVQZ1hdoc62KOEaHeiv7XJT3FR6_AEa1Z-G
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QTfSECsZve_BoZevWrfWGRIIRYVEk3Eg_ExIzyGAm_ve224IcvHhrmrw2ea_te30fvwfALTeRJkZ6KA6VQqGSEvEgEsgaC6HkinJmCkkP4uGQTqcsqYG7TS2M1rpIPtP3bljE8tVC5s5V1qaMODi4HbBLwhD7ZbXWxqMS2L9MxGiF3-N7rN2dJG8ue8tBUjIHwrzVQKXQH73G_3Y-BK3fQjyYbFTMEajp9Bg0KssRVvdy1QSTxJ0A_glHDknTkuTO3fEAe4sMPtp3H74v7RLtjpR5xuU3tBpKaTQyBs5T6PA5LGlnK6QAyyzkFvjoPY27fVR1TEBz7AVrJONIYwcJFjv3nhRa4UBhTwtBsbCGC2M8EoQY4QlpTauYKyMUjn3uAnKRJMEJqKeLVJ8CSLVPOCFUuPbUEfGp0gHVxsQ8xFj74RloOjbNliUoxqzi0Pnf0zdgvz9-HcwGz8OXC3DgZFLmW12C-jrL9RXYk1_r-Sq7LmT6A5dFos0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Partial+Order+Pruning%3A+For+Best+Speed%2FAccuracy+Trade-Off+in+Neural+Architecture+Search&rft.au=Li%2C+Xin&rft.au=Zhou%2C+Yiming&rft.au=Pan%2C+Zheng&rft.au=Feng%2C+Jiashi&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=9137&rft.epage=9145&rft_id=info:doi/10.1109%2FCVPR.2019.00936&rft.externalDocID=8953899