The Border K-Means Clustering Algorithm for One Dimensional Data
Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-determin...
Gespeichert in:
| Veröffentlicht in: | International Conference on Big Data and Smart Computing S. 35 - 42 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.01.2022
|
| Schlagworte: | |
| ISSN: | 2375-9356 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-deterministic results and run times that greatly vary depending on the initial selection of cluster centroids. To improve the k-means algorithm, we present in this paper a border k-means clustering algorithm. It combines concepts from the k-means algorithm with an additional focus on the concepts of the borders dividing clusters. Consequently, the resulting border k-means algorithm leads to deterministic results and a great reduction in run time when compared with the traditional k-means algorithm. |
|---|---|
| AbstractList | Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-deterministic results and run times that greatly vary depending on the initial selection of cluster centroids. To improve the k-means algorithm, we present in this paper a border k-means clustering algorithm. It combines concepts from the k-means algorithm with an additional focus on the concepts of the borders dividing clusters. Consequently, the resulting border k-means algorithm leads to deterministic results and a great reduction in run time when compared with the traditional k-means algorithm. |
| Author | Leung, Carson K. Froese, Ryan Loewen, Tyler S. Klassen, James W. |
| Author_xml | – sequence: 1 givenname: Ryan surname: Froese fullname: Froese, Ryan organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada – sequence: 2 givenname: James W. surname: Klassen fullname: Klassen, James W. organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada – sequence: 3 givenname: Carson K. surname: Leung fullname: Leung, Carson K. email: kleung@cs.umanitoba.ca organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada – sequence: 4 givenname: Tyler S. surname: Loewen fullname: Loewen, Tyler S. organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada |
| BookMark | eNotj71OwzAYAA0CiVLyBAz4BVL8E9vxRpvyJ4q6lLmy4y-pUWJXdhh4-4JguuV00l2jixADIHRHyYJSou9Xvm_ieBQVl2TBCGMLQghVZ6jQqqZSiopRrfg5mjGuRKm5kFeoyPnzV9NSM0Vm6GF3ALyKyUHCb-U7mJBxM3zlCZIPPV4OfUx-Ooy4iwlvA-C1HyFkH4MZ8NpM5gZddmbIUPxzjj6eHnfNS7nZPr82y03pGeFT2SqpnRSMcdZZSyvaVopqY62gNRfcOWIp6TpRE9kaw6mVltfOCeNqKxkAn6Pbv64HgP0x-dGk7_3Pn6xUxU_sJE03 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigComp54360.2022.00017 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665421973 1665421975 |
| EISSN | 2375-9356 |
| EndPage | 42 |
| ExternalDocumentID | 9736474 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-c769d652232fbb141c4719abb518353dd0b10ff5806caa31b6b38dd5ad8b62ee3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000835722100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:24:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c769d652232fbb141c4719abb518353dd0b10ff5806caa31b6b38dd5ad8b62ee3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9736474 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Big Data and Smart Computing |
| PublicationTitleAbbrev | BIGCOMP |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001969270 |
| Score | 1.9707428 |
| Snippet | Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 35 |
| SubjectTerms | Big data cluster analysis clustering Clustering algorithms Conferences data analysis data mining Data visualization Earth k-means algorithm machine learning Runtime smart computing Visual analytics |
| Title | The Border K-Means Clustering Algorithm for One Dimensional Data |
| URI | https://ieeexplore.ieee.org/document/9736474 |
| WOSCitedRecordID | wos000835722100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5t8eCpaivu5ODRsZmsk5vWWgS19qDSW8k2daBOpU79_SYzY4vgxVsICYEXHt9bvwfAOeKOpka5iBGtImoxiaRl3nGV1HhEw5aVGd3XBzEaJZOJHDfAxboXxjlXFp-5y7Asc_l2YVYhVNaTIrCd0yZoCsGrXq1NPEVyiQWqS7hiJHv9bBZ0ilHCkXcEccnMGf8eo1KiyLD9v_d3QHfTjgfHa6DZBQ2X74H2zzwGWKtnB1z5P4f9kkwT3kePzqMQvJmvAhWCvwev57PFMive3qE3VOFT7uAgUPtXtBxwoArVBS_D2-ebu6iekBBlGJEiMoJLy70JRXCqdUxj47FGKq2Z11RGrEU6RmnKEsSNUiTWXJPEWqZsojl2juyDVr7I3QGAwiTUWSSs9h6STJCiLqUypCX9QYXxIegEgUw_KhKMaS2Lo7-3j8F2kHgVqzgBrWK5cqdgy3wV2efyrPy5b7FFmRg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG8QTfSECsa3PXh02vW19aaABMNDDmi4kXbtcAkOg8O_33abEBMv3pqmTZqv-fL7nr8PgGvEDY0jaTxGlPSoxsQTmlnHVdDIIhrWLM_ovvaD4TCcTMSoAm7WvTDGmLz4zNy6ZZ7L14to5UJldyJwbOd0C2y7yVms6NbaRFQEFzhAZRGXj8RdM5k5rWKUcGRdQZxzc_q_B6nkONKp_e8F-6CxaciDozXUHICKSQ9B7WciAywVtA7u7a_DZk6nCXvewFgcgq35ypEh2HvwYT5bLJPs7R1aUxU-pwa2Hbl_QcwB2zKTDfDSeRy3ul45I8FLMCKZFwVcaG6NKIJjpXzqRxZthFSKWV1lRGukfBTHLEQ8kpL4iisSas2kDhXHxpAjUE0XqTkGMIhCajQKtLI-kgiRpCamwiUm7UGJ8QmoO4FMPwoajGkpi9O_t6_Abnc86E_7T8PeGdhz0i8iF-egmi1X5gLsRF9Z8rm8zH_xG-C-nGM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=The+Border+K-Means+Clustering+Algorithm+for+One+Dimensional+Data&rft.au=Froese%2C+Ryan&rft.au=Klassen%2C+James+W.&rft.au=Leung%2C+Carson+K.&rft.au=Loewen%2C+Tyler+S.&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=35&rft.epage=42&rft_id=info:doi/10.1109%2FBigComp54360.2022.00017&rft.externalDocID=9736474 |