The Border K-Means Clustering Algorithm for One Dimensional Data

Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Big Data and Smart Computing S. 35 - 42
Hauptverfasser: Froese, Ryan, Klassen, James W., Leung, Carson K., Loewen, Tyler S.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2022
Schlagworte:
ISSN:2375-9356
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-deterministic results and run times that greatly vary depending on the initial selection of cluster centroids. To improve the k-means algorithm, we present in this paper a border k-means clustering algorithm. It combines concepts from the k-means algorithm with an additional focus on the concepts of the borders dividing clusters. Consequently, the resulting border k-means algorithm leads to deterministic results and a great reduction in run time when compared with the traditional k-means algorithm.
AbstractList Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and flexibility to work in many real-life applications and services. Despite being commonly used, the k-means algorithm suffers from non-deterministic results and run times that greatly vary depending on the initial selection of cluster centroids. To improve the k-means algorithm, we present in this paper a border k-means clustering algorithm. It combines concepts from the k-means algorithm with an additional focus on the concepts of the borders dividing clusters. Consequently, the resulting border k-means algorithm leads to deterministic results and a great reduction in run time when compared with the traditional k-means algorithm.
Author Leung, Carson K.
Froese, Ryan
Loewen, Tyler S.
Klassen, James W.
Author_xml – sequence: 1
  givenname: Ryan
  surname: Froese
  fullname: Froese, Ryan
  organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada
– sequence: 2
  givenname: James W.
  surname: Klassen
  fullname: Klassen, James W.
  organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada
– sequence: 3
  givenname: Carson K.
  surname: Leung
  fullname: Leung, Carson K.
  email: kleung@cs.umanitoba.ca
  organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada
– sequence: 4
  givenname: Tyler S.
  surname: Loewen
  fullname: Loewen, Tyler S.
  organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada
BookMark eNotj71OwzAYAA0CiVLyBAz4BVL8E9vxRpvyJ4q6lLmy4y-pUWJXdhh4-4JguuV00l2jixADIHRHyYJSou9Xvm_ieBQVl2TBCGMLQghVZ6jQqqZSiopRrfg5mjGuRKm5kFeoyPnzV9NSM0Vm6GF3ALyKyUHCb-U7mJBxM3zlCZIPPV4OfUx-Ooy4iwlvA-C1HyFkH4MZ8NpM5gZddmbIUPxzjj6eHnfNS7nZPr82y03pGeFT2SqpnRSMcdZZSyvaVopqY62gNRfcOWIp6TpRE9kaw6mVltfOCeNqKxkAn6Pbv64HgP0x-dGk7_3Pn6xUxU_sJE03
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigComp54360.2022.00017
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665421973
1665421975
EISSN 2375-9356
EndPage 42
ExternalDocumentID 9736474
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-c769d652232fbb141c4719abb518353dd0b10ff5806caa31b6b38dd5ad8b62ee3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000835722100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c769d652232fbb141c4719abb518353dd0b10ff5806caa31b6b38dd5ad8b62ee3
PageCount 8
ParticipantIDs ieee_primary_9736474
PublicationCentury 2000
PublicationDate 2022-Jan.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationTitle International Conference on Big Data and Smart Computing
PublicationTitleAbbrev BIGCOMP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969270
Score 1.9707428
Snippet Clustering has been widely used for data pre-processing, mining, and analysis. The k-means clustering algorithm is commonly used because of its simplicity and...
SourceID ieee
SourceType Publisher
StartPage 35
SubjectTerms Big data
cluster analysis
clustering
Clustering algorithms
Conferences
data analysis
data mining
Data visualization
Earth
k-means algorithm
machine learning
Runtime
smart computing
Visual analytics
Title The Border K-Means Clustering Algorithm for One Dimensional Data
URI https://ieeexplore.ieee.org/document/9736474
WOSCitedRecordID wos000835722100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5t8eCpaivu5ODRsZmsk5vWWgS19qDSW8k2daBOpU79_SYzY4vgxVsICYEXHt9bvwfAOeKOpka5iBGtImoxiaRl3nGV1HhEw5aVGd3XBzEaJZOJHDfAxboXxjlXFp-5y7Asc_l2YVYhVNaTIrCd0yZoCsGrXq1NPEVyiQWqS7hiJHv9bBZ0ilHCkXcEccnMGf8eo1KiyLD9v_d3QHfTjgfHa6DZBQ2X74H2zzwGWKtnB1z5P4f9kkwT3kePzqMQvJmvAhWCvwev57PFMive3qE3VOFT7uAgUPtXtBxwoArVBS_D2-ebu6iekBBlGJEiMoJLy70JRXCqdUxj47FGKq2Z11RGrEU6RmnKEsSNUiTWXJPEWqZsojl2juyDVr7I3QGAwiTUWSSs9h6STJCiLqUypCX9QYXxIegEgUw_KhKMaS2Lo7-3j8F2kHgVqzgBrWK5cqdgy3wV2efyrPy5b7FFmRg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG8QTfSECsa3PXh02vW19aaABMNDDmi4kXbtcAkOg8O_33abEBMv3pqmTZqv-fL7nr8PgGvEDY0jaTxGlPSoxsQTmlnHVdDIIhrWLM_ovvaD4TCcTMSoAm7WvTDGmLz4zNy6ZZ7L14to5UJldyJwbOd0C2y7yVms6NbaRFQEFzhAZRGXj8RdM5k5rWKUcGRdQZxzc_q_B6nkONKp_e8F-6CxaciDozXUHICKSQ9B7WciAywVtA7u7a_DZk6nCXvewFgcgq35ypEh2HvwYT5bLJPs7R1aUxU-pwa2Hbl_QcwB2zKTDfDSeRy3ul45I8FLMCKZFwVcaG6NKIJjpXzqRxZthFSKWV1lRGukfBTHLEQ8kpL4iisSas2kDhXHxpAjUE0XqTkGMIhCajQKtLI-kgiRpCamwiUm7UGJ8QmoO4FMPwoajGkpi9O_t6_Abnc86E_7T8PeGdhz0i8iF-egmi1X5gLsRF9Z8rm8zH_xG-C-nGM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Big+Data+and+Smart+Computing&rft.atitle=The+Border+K-Means+Clustering+Algorithm+for+One+Dimensional+Data&rft.au=Froese%2C+Ryan&rft.au=Klassen%2C+James+W.&rft.au=Leung%2C+Carson+K.&rft.au=Loewen%2C+Tyler+S.&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2375-9356&rft.spage=35&rft.epage=42&rft_id=info:doi/10.1109%2FBigComp54360.2022.00017&rft.externalDocID=9736474