Power Equipment Recognition Method based on Mask R-CNN and Bayesian Context Network
In order to improve the accuracy of power equipment recognition, an image recognition method based on Mask RCNN and Bayesian Context Network is proposed. The two-layer network contains Mask R-CNN as the first layer, which gives preliminary recognition results, and Bayesian Context Network as the sec...
Uloženo v:
| Vydáno v: | IEEE Power & Energy Society General Meeting s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
02.08.2020
|
| Témata: | |
| ISSN: | 1944-9933 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to improve the accuracy of power equipment recognition, an image recognition method based on Mask RCNN and Bayesian Context Network is proposed. The two-layer network contains Mask R-CNN as the first layer, which gives preliminary recognition results, and Bayesian Context Network as the second layer, which utilizes context information to correct the preliminary results. Bayesian Context Network is designed to take the relationship of type, size, and spatial location between objects into account. Experiments on images of power equipment in substation show that the proposed method outperforms Mask R-CNN, Multi-task Network Cascades and Fully Convolutional Instance-aware Semantic Segmentation. Since power equipment in a picture shows a strong correlation, the proposed method is quite suitable for power equipment recognition. |
|---|---|
| AbstractList | In order to improve the accuracy of power equipment recognition, an image recognition method based on Mask RCNN and Bayesian Context Network is proposed. The two-layer network contains Mask R-CNN as the first layer, which gives preliminary recognition results, and Bayesian Context Network as the second layer, which utilizes context information to correct the preliminary results. Bayesian Context Network is designed to take the relationship of type, size, and spatial location between objects into account. Experiments on images of power equipment in substation show that the proposed method outperforms Mask R-CNN, Multi-task Network Cascades and Fully Convolutional Instance-aware Semantic Segmentation. Since power equipment in a picture shows a strong correlation, the proposed method is quite suitable for power equipment recognition. |
| Author | Xiuchen, JIANG Yingjie, YAN Siheng, XIONG Rui, XU Ying, DU Zihan, CONG Yadong, LIU |
| Author_xml | – sequence: 1 givenname: XIONG surname: Siheng fullname: Siheng, XIONG email: xiongsiheng@sjtu.edu.cn organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China – sequence: 2 givenname: LIU surname: Yadong fullname: Yadong, LIU email: lyd@sjtu.edu.cn organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China – sequence: 3 givenname: XU surname: Rui fullname: Rui, XU organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China – sequence: 4 givenname: DU surname: Ying fullname: Ying, DU organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China – sequence: 5 givenname: CONG surname: Zihan fullname: Zihan, CONG organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China – sequence: 6 givenname: YAN surname: Yingjie fullname: Yingjie, YAN organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China – sequence: 7 givenname: JIANG surname: Xiuchen fullname: Xiuchen, JIANG organization: Shanghai Jiao Tong University,Department of Electronic Information and Electrical Engineering,Shanghai,China |
| BookMark | eNotkM1OAjEcxKvRRECewIN9gcV-btujbgBNYCWgZ9Ld_lcr0uJuDfL2YmQuM7_LZDJ9dBFiAIRuKRlRSszdYryazgU1UowYYWRkmKZKyjPUp-oYpSRan6MeNUJkxnB-hYZd90GOkkLlOeuh1SLuocXjr2-_20JIeAl1fAs--RjwHNJ7dLiyHTj8x7bb4GVWlCW2weEHe4DO24CLGBL8JFxC2sd2c40uG_vZwfDkA_Q6Gb8Uj9nsefpU3M8yzwhPWZ3TWlNeOeKMEkblx7GN1bISyoAzvKmUJTWlFZNOkbwhAozTrOJO57XmhA_QzX-vB4D1rvVb2x7Wpw_4L23AUlI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/PESGM41954.2020.9281755 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1728155088 9781728155081 |
| EISSN | 1944-9933 |
| EndPage | 5 |
| ExternalDocumentID | 9281755 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-c61c813bd0d974976088fa85b479ed93fb7a0c11b25d706f04e9d82b3d86c8303 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679246601114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:33:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c61c813bd0d974976088fa85b479ed93fb7a0c11b25d706f04e9d82b3d86c8303 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9281755 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Aug.-2 |
| PublicationDateYYYYMMDD | 2020-08-02 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-Aug.-2 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Power & Energy Society General Meeting |
| PublicationTitleAbbrev | PESGM |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000547662 |
| Score | 2.1773632 |
| Snippet | In order to improve the accuracy of power equipment recognition, an image recognition method based on Mask RCNN and Bayesian Context Network is proposed. The... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Bayesian Context Network Mask R-CNN power equipment in substation power equipment recognition relationship between objects |
| Title | Power Equipment Recognition Method based on Mask R-CNN and Bayesian Context Network |
| URI | https://ieeexplore.ieee.org/document/9281755 |
| WOSCitedRecordID | wos000679246601114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHP4xhwe9-NjENzl4tFuatnlcHZteVsamsNtI84AhdLp1ov-9SVanghdvTaEUfmnz5fE9AG4Ep-6rYDSyEpso5TaJuIqp-_E4TbnKlMY6hE2wPOfTqRg14HarhTHGBPKZ6fjLcJavF2rtt8q6gnCHdtkO7DDGNlqt7X6Km3owSklN4Yqx6I76k_th6h3N3DKQ4E799K8YlYAig4P_vf8Q2t9yPDTaAs0RNEx5DPs_nARbMBn5tDPUf13PAwEIjb-IQYsSDUNKNPKApZFvy9UzGke9PEey1OhOfhgvpUTBqeq9QvmGGt6Gp0H_sfcQ1XkJ0ZzgpIoUjRWPk8KV160S3DzDjSBW8qxImTBaJLZgEqs4LkimGaYWp0ZoTopEc6q4w7ITaJaL0pwCsm78FDaz3iw-tZaIwrBMKutltkrS4gxavjyzl40lxqyuzPnfty9gz_dA4M2RS2hWy7W5gl31Vs1Xy-vQj5_ox52J |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwHG4QTdSLDzS-7cGjg67ruvYqATHCQgATbqTrIyEmQ2EY_e9ty0RNvHhblyxZft369fE9ALjhjNqvIqGBEUgHhJkoYDKk9sdjlDAZS4WUD5tI0pSNx7xfAbdrLYzW2pPPdN1d-rN8NZNLt1XW4JhZtIs3wGZMCA5Xaq31joqdfCSU4pLEFSLe6LeG9z3iPM3sQhCjevn8ryAVjyPtvf-9wT44-hbkwf4aag5AReeHYPeHl2ANDPsu7wy2XpdTTwGCgy9q0CyHPZ8TDR1kKejaYvEMB0EzTaHIFbwTH9qJKaH3qnovYLoihx-Bp3Zr1OwEZWJCMMUoKgJJQ8nCKLMFtusEO9OwY4gRLM5IwrXikckSgWQYZjhWCaIGEc0Vw1mkGJXMotkxqOazXJ8AaOwIyk1snF08MQbzTCexkMYJbaWg2SmoufJMXlamGJOyMmd_374G251RrzvpPqSP52DH9YZn0eELUC3mS30JtuRbMV3Mr3yffgJKxKDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=Power+Equipment+Recognition+Method+based+on+Mask+R-CNN+and+Bayesian+Context+Network&rft.au=Siheng%2C+XIONG&rft.au=Yadong%2C+LIU&rft.au=Rui%2C+XU&rft.au=Ying%2C+DU&rft.date=2020-08-02&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM41954.2020.9281755&rft.externalDocID=9281755 |