Scalable Variational Quantum Circuits for Autoencoder-based Drug Discovery
The de novo design of drug molecules is recognized as a time-consuming and costly process, and computational approaches have been applied in each stage of the drug discovery pipeline. Variational autoencoder is one of the computer-aided design methods which explores the chemical space based on an ex...
Uloženo v:
| Vydáno v: | Proceedings - Design, Automation, and Test in Europe Conference and Exhibition s. 340 - 345 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
EDAA
14.03.2022
|
| Témata: | |
| ISSN: | 1558-1101 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The de novo design of drug molecules is recognized as a time-consuming and costly process, and computational approaches have been applied in each stage of the drug discovery pipeline. Variational autoencoder is one of the computer-aided design methods which explores the chemical space based on an existing molecular dataset. Quantum machine learning has emerged as an atypical learning method that may speed up some classical learning tasks because of its strong expressive power. However, near-term quantum computers suffer from limited num-ber of qubits which hinders the representation learning in high dimensional spaces. We present a scalable quantum generative autoencoder (SQ-VAE) for simultaneously reconstructing and sampling drug molecules, and a corresponding vanilla variant (SQ-AE) for better reconstruction. The architectural strategies in hybrid quantum classical networks such as, adjustable quantum layer depth, heterogeneous learning rates, and patched quantum circuits are proposed to learn high dimensional dataset such as, ligand-targeted drugs. Extensive experimental results are reported for different dimensions including 8x8 and 32x32 after choosing suitable architectural strategies. The performance of quantum generative autoencoder is compared with the corre-sponding classical counterpart throughout all experiments. The results show that quantum computing advantages can be achieved for normalized low-dimension molecules, and that high-dimension molecules generated from quantum generative autoencoders have better drug properties within the same learning period. |
|---|---|
| AbstractList | The de novo design of drug molecules is recognized as a time-consuming and costly process, and computational approaches have been applied in each stage of the drug discovery pipeline. Variational autoencoder is one of the computer-aided design methods which explores the chemical space based on an existing molecular dataset. Quantum machine learning has emerged as an atypical learning method that may speed up some classical learning tasks because of its strong expressive power. However, near-term quantum computers suffer from limited num-ber of qubits which hinders the representation learning in high dimensional spaces. We present a scalable quantum generative autoencoder (SQ-VAE) for simultaneously reconstructing and sampling drug molecules, and a corresponding vanilla variant (SQ-AE) for better reconstruction. The architectural strategies in hybrid quantum classical networks such as, adjustable quantum layer depth, heterogeneous learning rates, and patched quantum circuits are proposed to learn high dimensional dataset such as, ligand-targeted drugs. Extensive experimental results are reported for different dimensions including 8x8 and 32x32 after choosing suitable architectural strategies. The performance of quantum generative autoencoder is compared with the corre-sponding classical counterpart throughout all experiments. The results show that quantum computing advantages can be achieved for normalized low-dimension molecules, and that high-dimension molecules generated from quantum generative autoencoders have better drug properties within the same learning period. |
| Author | Li, Junde Ghosh, Swaroop |
| Author_xml | – sequence: 1 givenname: Junde surname: Li fullname: Li, Junde email: jul1512@psu.edu organization: The Pennsylvania State University,Department of Computer Science and Engineering – sequence: 2 givenname: Swaroop surname: Ghosh fullname: Ghosh, Swaroop email: szg212@psu.edu organization: The Pennsylvania State University,Department of Computer Science and Engineering |
| BookMark | eNotj91KwzAYQKMouE6fwAvzAq35kjRNLku3-cNAxOntSNMvEukaSVthb6_grs7d4ZyMXAxxQELugBVcGDD3q3q3LiWALDjjvDBVJUslz0gmjAbDlVDqnCygLHUOwOCKZOP4xRgrBTcL8vzmbG_bHumHTcFOIQ62p6-zHab5QJuQ3BymkfqYaD1PEQcXO0x5a0fs6CrNn3QVRhd_MB2vyaW3_Yg3Jy7J-2a9ax7z7cvDU1Nv88CZmHL3V8ekrzqDHjqorAemla-0M8hFpxVrjW8dawUH40qOSnvNLDiHmkupxJLc_nsDIu6_UzjYdNyfvsUvDfRPuw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.23919/DATE54114.2022.9774564 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 3981926366 9783981926361 |
| EISSN | 1558-1101 |
| EndPage | 345 |
| ExternalDocumentID | 9774564 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO FEDTE IEGSK IPLJI KZ1 LMP M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-c56404f7d9ef1d17af1086f78c9e23d860b9fbc0b3219c52e68f80a1cce824463 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819484300067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:36:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c56404f7d9ef1d17af1086f78c9e23d860b9fbc0b3219c52e68f80a1cce824463 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9774564 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-March-14 |
| PublicationDateYYYYMMDD | 2022-03-14 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-March-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - Design, Automation, and Test in Europe Conference and Exhibition |
| PublicationTitleAbbrev | DATE |
| PublicationYear | 2022 |
| Publisher | EDAA |
| Publisher_xml | – name: EDAA |
| SSID | ssj0005329 ssib048702904 ssib051591249 |
| Score | 2.3022194 |
| Snippet | The de novo design of drug molecules is recognized as a time-consuming and costly process, and computational approaches have been applied in each stage of the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 340 |
| SubjectTerms | Drug Discovery Drugs Image synthesis Learning systems Pipelines Quantum Machine Learning Qubit Representation learning Space exploration Variational Autoen-coder |
| Title | Scalable Variational Quantum Circuits for Autoencoder-based Drug Discovery |
| URI | https://ieeexplore.ieee.org/document/9774564 |
| WOSCitedRecordID | wos000819484300067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaigGWQgviWx4Yces4jj_GqqVCDFURBXWr4i-UgRalCRL_HjtNC0gsbFGGyLoX5-457-4BcON4IqmKHBI0ZYgqbZCU3CFmrRIp17FKcWU2wScTMZ_LaQPc7nphrLWV-Mz2wmX1L9-sdBmOyvqhVkkYbYIm52zTq7V9d3zdjYn8phYhTUcVtdjKPWIiN_ouEstI9keD2V1CPRvwHJGQXv3oXx4rVYoZt_-3uENw_N2rB6e7LHQEGnbZAe2tWQOs924HHPyYPNgFD08em9A1BV88Wa4PBOFj6eNcvsFhlusyK9bQV7RwUBarMO3S2ByFnGfgKC9f4Shb6yD__DwGz-O72fAe1bYKKCM4LpD2q8TUcSOti0zEUxfclhwXWloSG8Gwkk5prGL_NdMJsUw4gdNIayt8McDiE9Barpb2FEAtsbE6uF95BAzhgmmHExwgVzTV6RnohkAt3jeTMxZ1jM7_vn0B9gMWQeEV0UvQKvLSXoE9_VFk6_y6gvsLfoGpxg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmqgXFDR-uwePFrfbbbt7JIBBRYIRDTfS7ofpQTClNfHfu1sKaOLFW9NDs5nX7czbvpkHcKVDn9PY1Q6jUeDQWEiH81A7gVIxi0LhxREuzCbCwYCNx3xYgetVL4xSqhCfqaa9LP7ly5nI7VHZja1V_IBuwKZPKcGLbq3l22Mqb0z4mlzYRO0W5GIp-PAIXyi8iMddftNpjbo-NXzAsERCmuXDf7msFEnmtva_5e3BwbpbDw1XeWgfKmpah9rSrgGVu7cOuz9mDzbg_tmgY_um0Kuhy-WRIHrKTaTzd9ROUpEn2RyZmha18mxm511KlTo260nUSfM31EnmwgpAvw7g5bY7avec0ljBSQj2MkeYVWKqQ8mVdqUbRtr6LemQCa6IJ1mAY65jgWPPfM-ET1TANMORK4RiphwIvEOoTmdTdQRIcCyVsP5XBgFJQhYIjX1sQY9pJKJjaNhATT4WszMmZYxO_r59Cdu90WN_0r8bPJzCjsXF6r1cegbVLM3VOWyJzyyZpxcF9N-Dra0N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Design%2C+Automation%2C+and+Test+in+Europe+Conference+and+Exhibition&rft.atitle=Scalable+Variational+Quantum+Circuits+for+Autoencoder-based+Drug+Discovery&rft.au=Li%2C+Junde&rft.au=Ghosh%2C+Swaroop&rft.date=2022-03-14&rft.pub=EDAA&rft.eissn=1558-1101&rft.spage=340&rft.epage=345&rft_id=info:doi/10.23919%2FDATE54114.2022.9774564&rft.externalDocID=9774564 |