Multi-Scale Feedback Convolutional Sparse Coding Network for Saliency Detection in Remote Sensing Images

Due to the huge difference in the shooting conditions of remote sensing images (RSI), the RSI itself has variable scales, multiple scenes and cluttered backgrounds, which lead to the poor detection effect of the SOD method for natural scene images (NSI). By exploring the multi-scale characteristics...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Geoscience and Remote Sensing Symposium proceedings s. 2588 - 2591
Hlavní autoři: Huang, Zhou, Chen, Huai-Xin, Bai, Cheng-Wu, Yan, Li-Li
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 11.07.2021
Témata:
ISSN:2153-7003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Due to the huge difference in the shooting conditions of remote sensing images (RSI), the RSI itself has variable scales, multiple scenes and cluttered backgrounds, which lead to the poor detection effect of the SOD method for natural scene images (NSI). By exploring the multi-scale characteristics of RSI, combining convolutional sparse coding (CSC) and convolutional neural network (CNN), this paper proposes a multiscale feedback CSC (MFC) network for SOD of optical RSI. Specifically, the soft threshold shrinkage (SST) function and the CNN components are first used to construct the CSC block (CSCB). Then, the multi-scale image representations are fed into the stacked CSCB to extract the features thoroughly. Finally, the side-out features are integrated through the cross-feature fusion module (CFF) with a top-down feedback strategy. The comprehensive evaluation results with the state-of-the-art (SOTA) competitors on the ORSSD and EORSSD datasets demonstrate the proposed model's priority.
ISSN:2153-7003
DOI:10.1109/IGARSS47720.2021.9555108