Slice Sampling for Lattice Gaussian Distribution

Sampling from the lattice Gaussian distribution has emerged as a key problem in coding and cryptography. In this paper, the slice sampling from Markov chain Monte Carlo (MCMC) is adopted to lattice Gaussian sampling. Firstly, the slice-based sampling algorithm is proposed to sample from lattice Gaus...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / IEEE International Symposium on Information Theory pp. 2589 - 2593
Main Authors: Wang, Zheng, Ling, Cong
Format: Conference Proceeding
Language:English
Published: IEEE 01.07.2019
Subjects:
ISSN:2157-8117
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sampling from the lattice Gaussian distribution has emerged as a key problem in coding and cryptography. In this paper, the slice sampling from Markov chain Monte Carlo (MCMC) is adopted to lattice Gaussian sampling. Firstly, the slice-based sampling algorithm is proposed to sample from lattice Gaussian distribution. Then, we demonstrate that the Markov chain arising from it is uniformly ergodic, namely, it converges exponentially fast to the stationary distribution. Moveover, the convergence rate of the underlying Markov chain is investigated, and we show the proposed slice sampling algorithm entails a better convergence performance than the independent Metropolis-Hastings-Klein (IMHK) sampling algorithm. Finally, simulation results based on MIMO detection are presented to confirm the performance gain by convergence enhancement.
AbstractList Sampling from the lattice Gaussian distribution has emerged as a key problem in coding and cryptography. In this paper, the slice sampling from Markov chain Monte Carlo (MCMC) is adopted to lattice Gaussian sampling. Firstly, the slice-based sampling algorithm is proposed to sample from lattice Gaussian distribution. Then, we demonstrate that the Markov chain arising from it is uniformly ergodic, namely, it converges exponentially fast to the stationary distribution. Moveover, the convergence rate of the underlying Markov chain is investigated, and we show the proposed slice sampling algorithm entails a better convergence performance than the independent Metropolis-Hastings-Klein (IMHK) sampling algorithm. Finally, simulation results based on MIMO detection are presented to confirm the performance gain by convergence enhancement.
Author Ling, Cong
Wang, Zheng
Author_xml – sequence: 1
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
– sequence: 2
  givenname: Cong
  surname: Ling
  fullname: Ling, Cong
  organization: Department of EEE, Imperial College London, London, SW7 2AZ, United Kingdom
BookMark eNotj8FKxDAURaMoOB39AHHTH2h976VtkqWMOhYKLjquhyRNJNJphyaz8O9VnNWFw-HAzdjVNE-OsXuEEhHUY9u3u5IAVSllpSqoLliGNZeNIoVwyVaEtSgkorhhWYxfAFxwoBWDfgzW5b0-HMcwfeZ-XvJOp_QHt_oUY9BT_hxiWoI5pTBPt-za6zG6u_Ou2cfry27zVnTv23bz1BWBgKfCcmfJeC2NJe6JN80ARklB3ohG6UpoNL9OXaEn753xwyC8dVJbqwxI4mv28N8Nzrn9cQkHvXzvz-_4DxeURlM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISIT.2019.8849404
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538692910
9781538692912
EISSN 2157-8117
EndPage 2593
ExternalDocumentID 8849404
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-c3ec2bfa8bc23f2366d0b9872fb769a47a1bc3e541f2ffebfdd7fce8acc9b0823
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489100302137&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:44:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c3ec2bfa8bc23f2366d0b9872fb769a47a1bc3e541f2ffebfdd7fce8acc9b0823
PageCount 5
ParticipantIDs ieee_primary_8849404
PublicationCentury 2000
PublicationDate 2019-July
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Symposium on Information Theory
PublicationTitleAbbrev ISIT
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037302
Score 1.692361
Snippet Sampling from the lattice Gaussian distribution has emerged as a key problem in coding and cryptography. In this paper, the slice sampling from Markov chain...
SourceID ieee
SourceType Publisher
StartPage 2589
SubjectTerms Convergence
Encoding
Gaussian distribution
Gold
lattice coding and decoding
Lattice Gaussian sampling
Lattices
M-CMC methods
Markov processes
slice sampling
Zinc
Title Slice Sampling for Lattice Gaussian Distribution
URI https://ieeexplore.ieee.org/document/8849404
WOSCitedRecordID wos000489100302137&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGjsdnsbh5ntVoopdAqvZU8pSDb0u76-93sbiuCF28hJIQkM5kh830zAHfGWKuZlNgr5nAitcY6SjVW3EU2Up6xipX2PuLjsZjP5aQF93sujHOuAp-5h9CsYvl2ZYrwVdYXIpFJSP55wDmruVq7VzcuJZU2UcuIyP5wOpwF4FaQhGrSr-oplfEYdP637DH0flh4aLK3LyfQctkpdHZlGFCjlV0g089S29FUBXB49oFKNxSNVB5QbehFFdtAk0RPIUFuU9uqB2-D59njK24KIeAlJXGOTewM1V4JbWjsacyYJVoKTr3mTKqEq0iXY9Ik8tR7p7213BsnlDFSh1DaGbSzVebOAZX-hrBCMGljmxCdKkOkpyklqSLCEXIB3XAAi3Wd62LR7P3y7-4rOApnXMNXr6Gdbwp3A4fmK19uN7fVBX0Do2CT5Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfRUtRXf5uDRtdlsNpuc1driWgqt0lvJUwqylXbX3-9mu60IXryFkBCSzGSGzPfNANxobYxiQgROMhtQoVSgwlgFMrGhCaVjrGKlvaXJcMinUzFqwO2WC2OtrcBn9s43q1i-WejCf5V1OaeC-uSfOzGlBK_ZWpt3NyplldRxyxCL7mA8mHjolpeFatqv-imV-ei1_rfwAXR-eHhotLUwh9Cw2RG0NoUYUK2XbcDjj1Lf0Vh6eHj2jkpHFKUy97g29CSLlSdKogefIreubtWB197j5L4f1KUQgjnBUR7oyGqinORKk8iRiDGDleAJcSphQtJEhqocE9PQEeescsYkTlsutRbKB9OOoZktMnsCqPQ4uOGcCRMZilUsNRaOxATHEnOL8Sm0_QHMPtfZLmb13s_-7r6Gvf7kJZ2lg-HzOez7816DWS-gmS8Lewm7-iufr5ZX1WV9A4X5lyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Slice+Sampling+for+Lattice+Gaussian+Distribution&rft.au=Wang%2C+Zheng&rft.au=Ling%2C+Cong&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=2157-8117&rft.spage=2589&rft.epage=2593&rft_id=info:doi/10.1109%2FISIT.2019.8849404&rft.externalDocID=8849404