PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving
The accelerating development of autonomous driving technology has placed greater demands on obtaining large amounts of high-quality data. Representative, labeled, real world data serves as the fuel for training deep learning networks, critical for improving self-driving perception algorithms. In thi...
Saved in:
| Published in: | 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) pp. 3095 - 3101 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
19.09.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The accelerating development of autonomous driving technology has placed greater demands on obtaining large amounts of high-quality data. Representative, labeled, real world data serves as the fuel for training deep learning networks, critical for improving self-driving perception algorithms. In this paper, we introduce PandaSet, the first dataset produced by a complete, high-precision autonomous vehicle sensor kit with a no-cost commercial license. The dataset was collected using one 360° mechanical spinning LiDAR, one forward-facing, long-range LiDAR, and 6 cameras. The dataset contains more than 100 scenes, each of which is 8 seconds long, and provides 28 types of labels for object classification and 37 types of labels for semantic segmentation. We provide baselines for LiDAR-only 3D object detection, LiDAR-camera fusion 3D object detection and LiDAR point cloud segmentation. For more details about PandaSet and the development kit, see https://scale.com/open-datasets/pandaset. |
|---|---|
| AbstractList | The accelerating development of autonomous driving technology has placed greater demands on obtaining large amounts of high-quality data. Representative, labeled, real world data serves as the fuel for training deep learning networks, critical for improving self-driving perception algorithms. In this paper, we introduce PandaSet, the first dataset produced by a complete, high-precision autonomous vehicle sensor kit with a no-cost commercial license. The dataset was collected using one 360° mechanical spinning LiDAR, one forward-facing, long-range LiDAR, and 6 cameras. The dataset contains more than 100 scenes, each of which is 8 seconds long, and provides 28 types of labels for object classification and 37 types of labels for semantic segmentation. We provide baselines for LiDAR-only 3D object detection, LiDAR-camera fusion 3D object detection and LiDAR point cloud segmentation. For more details about PandaSet and the development kit, see https://scale.com/open-datasets/pandaset. |
| Author | Chai, Xiaolin Li, Zesong Hao, Steven Wu, Jian Wang, Yunlong Xiao, Pengchuan Shao, Zhenlei Sun, Kai Zhang, Zishuo Jiao, Judy Yang, Diange Jiang, Kun |
| Author_xml | – sequence: 1 givenname: Pengchuan surname: Xiao fullname: Xiao, Pengchuan email: xiaopengchuan@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 2 givenname: Zhenlei surname: Shao fullname: Shao, Zhenlei email: shaozhenlei@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 3 givenname: Steven surname: Hao fullname: Hao, Steven email: steven@scale.com organization: Scale AI, Inc.,USA – sequence: 4 givenname: Zishuo surname: Zhang fullname: Zhang, Zishuo email: zishuoz@princeton.edu organization: Princeton University,USA – sequence: 5 givenname: Xiaolin surname: Chai fullname: Chai, Xiaolin email: chaixiaolin@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 6 givenname: Judy surname: Jiao fullname: Jiao, Judy email: judy.jiao@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 7 givenname: Zesong surname: Li fullname: Li, Zesong email: lizesong@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 8 givenname: Jian surname: Wu fullname: Wu, Jian email: wujian@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 9 givenname: Kai surname: Sun fullname: Sun, Kai email: s@hesaitech.com organization: Hesai Technology Co., Ltd.,China – sequence: 10 givenname: Kun surname: Jiang fullname: Jiang, Kun email: jiangkun@tsinghua.edu.cn organization: Tsinghua University,State Key Laboratory of Automotive Safety and Energy, Center for Intelligent Connected Vehicles and Transportation, School of Vehicle and Mobility,China – sequence: 11 givenname: Yunlong surname: Wang fullname: Wang, Yunlong email: yl-wang19@mails.tsinghua.edu.cn organization: Tsinghua University,State Key Laboratory of Automotive Safety and Energy, Center for Intelligent Connected Vehicles and Transportation, School of Vehicle and Mobility,China – sequence: 12 givenname: Diange surname: Yang fullname: Yang, Diange email: ydg@tsinghua.edu.cn organization: Tsinghua University,State Key Laboratory of Automotive Safety and Energy, Center for Intelligent Connected Vehicles and Transportation, School of Vehicle and Mobility,China |
| BookMark | eNotj9FKwzAUQCPog5t-gSD5gc7cpGkTH4TSOR0MFDqfR3pzIwGXSpsO_HsF93TgPBw4C3aZhkSM3YNYAQj7sN13bWlsbVZSSFhZXWkh7AVbQC0NWChlec2e3l3yrqP8yBt_cgnJ847SNIy8m2MmvnbZTZR5-DPNnIc0HId54usxnmL6vGFXwX1NdHvmkn1snvfta7F7e9m2za6IUqhcoCqD14gBrQoBjfKaCHswKJBkpY2X6FWwGkxFog-m77EGQEBRGbKkluzuvxuJ6PA9xqMbfw7nJfUL2ulHbA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ITSC48978.2021.9565009 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728191424 9781728191423 |
| EndPage | 3101 |
| ExternalDocumentID | 9565009 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i203t-c34fd5ccfc93ffc83d5eecb18c0ce2658d2cd3f95186e0bf8bbc711c1c068e9e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841862503016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:12 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-c34fd5ccfc93ffc83d5eecb18c0ce2658d2cd3f95186e0bf8bbc711c1c068e9e3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9565009 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Sept.-19 |
| PublicationDateYYYYMMDD | 2021-09-19 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) |
| PublicationTitleAbbrev | ITSC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.3354495 |
| Snippet | The accelerating development of autonomous driving technology has placed greater demands on obtaining large amounts of high-quality data. Representative,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3095 |
| SubjectTerms | Data collection Laser radar Measurement Object detection Semantics Three-dimensional displays Training |
| Title | PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving |
| URI | https://ieeexplore.ieee.org/document/9565009 |
| WOSCitedRecordID | wos000841862503016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVp6NCpLUnpNxo61on1YUvuUAhJQ7sEg1PIFuLTCbLExZX7-ys5JqXQpZsQQuKk4d67u6cj5EFxoTDhJhKcQSRloqLS8KACQak8guVM2rbZhFos9GqV5T3yeNDCIGJbfIajMGxz-aaCJoTKxh7LJ61a70gptddqdaJfFmfjt2UxldqzIs_6OBt1i391TWmdxvz0f8edkeGP-o7mB79yTnq4G5DnPFD-At0TnXRpe1p4ClrVtGg8bKSzjfMOyVEPQumkcUGr4Ek9ndXbEDIYkvf5y3L6GnW9D6Itj4WLQEhrEgALmbAWtDAJIpRMQwzIPWwwHIywHh_pFOPS6rIExRgwiFONGYoL0t9VO7wkFEPZ1AZSmXoqx4TagChNzAxIvyWm6ooMgu3rj_33FuvO7Ou_p2_ISbjeUDLBslvSd3WDd-QYvtz2s75v3-QbhJOPJA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2lCnpSacVvc_DotpuP3WQ9CKW1tFhLYSv0VrqTCfTSyrrr7zfZLhXBi7cQQsIkh3lvZl6GkAfFhcKIm0BwBoGUkQoyw70KBKVyCJYzaatmE2o61YtFMmuQx70WBhGr4jPs-GGVyzdbKH2orOuwfFSp9Q4iKTnbqbVq2S8Lk-54nvaldrzI8T7OOvXyX31TKrcxPPnfgaek_aO_o7O9ZzkjDdy0yPPMk_4UiyfaqxP3NHUkdJvTtHTAkQ5WhXNJBXUwlPbKwqsVHK2ng3ztgwZt8j58mfdHQd39IFjzUBQBCGlNBGAhEdaCFiZChIxpCAG5Aw6GgxHWISQdY5hZnWWgGAMGYawxQXFOmpvtBi8IRV84tYJYxo7MMaFWIDITMgPSbYmxuiQtb_vyY_fBxbI2--rv6XtyNJq_TZaT8fT1mhz7q_YFFCy5Ic0iL_GWHMJXsf7M76r3-QYlY5Jr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Intelligent+Transportation+Systems+Conference+%28ITSC%29&rft.atitle=PandaSet%3A+Advanced+Sensor+Suite+Dataset+for+Autonomous+Driving&rft.au=Xiao%2C+Pengchuan&rft.au=Shao%2C+Zhenlei&rft.au=Hao%2C+Steven&rft.au=Zhang%2C+Zishuo&rft.date=2021-09-19&rft.pub=IEEE&rft.spage=3095&rft.epage=3101&rft_id=info:doi/10.1109%2FITSC48978.2021.9565009&rft.externalDocID=9565009 |