Can We Obtain Fine-grained Heartbeat Waveform via Contact-free RF-sensing?

Contact-free vital-signs monitoring enabled by radio frequency (RF) sensing is gaining increasing attention, thanks to its non-intrusiveness, noise-resistance, and low cost. Whereas most of these systems only perform respiration monitoring or retrieve heart rate, few can recover fine-grained heartbe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annual Joint Conference of the IEEE Computer and Communications Societies s. 1759 - 1768
Hlavní autori: Zhang, Shujie, Zheng, Tianyue, Chen, Zhe, Luo, Jun
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 02.05.2022
Predmet:
ISSN:2641-9874
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Contact-free vital-signs monitoring enabled by radio frequency (RF) sensing is gaining increasing attention, thanks to its non-intrusiveness, noise-resistance, and low cost. Whereas most of these systems only perform respiration monitoring or retrieve heart rate, few can recover fine-grained heartbeat waveform. The major reason is that, though both respiration and heartbeat cause detectable micro-motions on human bodies, the former is so strong that it overwhelms the latter. In this paper, we aim to answer the question in the paper title, by demystifying how heartbeat waveform can be extracted from RF-sensing signal. Applying several mainstream methods to recover heartbeat waveform from raw RF signal, our results reveal that these methods may not achieve what they have claimed, mainly because they assume linear signal mixing whereas the composition between respiration and heartbeat can be highly nonlinear. To overcome the difficulty of decomposing nonlinear signal mixing, we leverage the power of a novel deep generative model termed variational encoder-decoder (VED). Exploiting the universal approximation ability of deep neural networks and the generative potential of variational inference, VED demonstrates a promising capability in recovering fine-grained heartbeat waveform from RF-sensing signal; this is firmly validated by our experiments with 12 subjects and 48-hour data.
AbstractList Contact-free vital-signs monitoring enabled by radio frequency (RF) sensing is gaining increasing attention, thanks to its non-intrusiveness, noise-resistance, and low cost. Whereas most of these systems only perform respiration monitoring or retrieve heart rate, few can recover fine-grained heartbeat waveform. The major reason is that, though both respiration and heartbeat cause detectable micro-motions on human bodies, the former is so strong that it overwhelms the latter. In this paper, we aim to answer the question in the paper title, by demystifying how heartbeat waveform can be extracted from RF-sensing signal. Applying several mainstream methods to recover heartbeat waveform from raw RF signal, our results reveal that these methods may not achieve what they have claimed, mainly because they assume linear signal mixing whereas the composition between respiration and heartbeat can be highly nonlinear. To overcome the difficulty of decomposing nonlinear signal mixing, we leverage the power of a novel deep generative model termed variational encoder-decoder (VED). Exploiting the universal approximation ability of deep neural networks and the generative potential of variational inference, VED demonstrates a promising capability in recovering fine-grained heartbeat waveform from RF-sensing signal; this is firmly validated by our experiments with 12 subjects and 48-hour data.
Author Luo, Jun
Chen, Zhe
Zheng, Tianyue
Zhang, Shujie
Author_xml – sequence: 1
  givenname: Shujie
  surname: Zhang
  fullname: Zhang, Shujie
  email: shujie002@ntu.edu.sg
  organization: Nanyang Technological University,School of Computer Science and Engineering,Singapore
– sequence: 2
  givenname: Tianyue
  surname: Zheng
  fullname: Zheng, Tianyue
  email: tianyue002@ntu.edu.sg
  organization: Nanyang Technological University,School of Computer Science and Engineering,Singapore
– sequence: 3
  givenname: Zhe
  surname: Chen
  fullname: Chen, Zhe
  email: chenz@ssijri.com
  organization: China-Singapore International Joint Research Institute,Guangzhou,China
– sequence: 4
  givenname: Jun
  surname: Luo
  fullname: Luo, Jun
  email: junluo@ntu.edu.sg
  organization: Nanyang Technological University,School of Computer Science and Engineering,Singapore
BookMark eNotj8tKAzEUQKMo2Fa_wE38gNTk5r0SGRxbqQ6I0mW5nd6UiE1lZij49xXs6pzVgTNmF2VfiLE7JadKyXg_f6ubqnk1IQQ5BQkwjT66KO0ZGyvnrLEBwJyzETijRAzeXLFx339JKYMHN2IvFRa-JN6sB8yF17mQ2HZ_Shs-I-yGNeHAl3igtO92_JCRV_syYDuI1BHx91r0VPpctg_X7DLhd083J07YZ_30Uc3EonmeV48LkUHqQbTKoLEGtSONGDThBmNSQNEnn9CClhvtI3jT2qB8ChJSMJDABpecbvWE3f53MxGtfrq8w-53dfrWR9tqTrY
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/INFOCOM48880.2022.9796905
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665458224
9781665458221
EISSN 2641-9874
EndPage 1768
ExternalDocumentID 9796905
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-c14a454a36e3aa83eada9f12e97f7fa5230d379274c5817f802f842f2586f63c3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936344400177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:23:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c14a454a36e3aa83eada9f12e97f7fa5230d379274c5817f802f842f2586f63c3
PageCount 10
ParticipantIDs ieee_primary_9796905
PublicationCentury 2000
PublicationDate 2022-May-2
PublicationDateYYYYMMDD 2022-05-02
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-2
  day: 02
PublicationDecade 2020
PublicationTitle Annual Joint Conference of the IEEE Computer and Communications Societies
PublicationTitleAbbrev INFOCOM
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008726
Score 2.3785834
Snippet Contact-free vital-signs monitoring enabled by radio frequency (RF) sensing is gaining increasing attention, thanks to its non-intrusiveness, noise-resistance,...
SourceID ieee
SourceType Publisher
StartPage 1759
SubjectTerms contact-free sensing
Costs
Deep learning
Heart beat
Neural networks
Radio frequency
RF signals
RF-sensing
Spatial diversity
variational encoder-decoder
Vital signs monitoring
Title Can We Obtain Fine-grained Heartbeat Waveform via Contact-free RF-sensing?
URI https://ieeexplore.ieee.org/document/9796905
WOSCitedRecordID wos000936344400177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5USmkvfWjpmxR67Opuks3j1IN0sYWqlBa9SZJNxMtadPX3N1nFttBLbyEhBL4MM_Ml8wC4196Gq_D0xgxTnqAwG2kmWeA8sVbU5UK6qtkE7_fFeCyHNXjY5cJYa6vgM9sOw-ovP5-bVXgq60guPZlL61DnnG9ytXZaV3DM9uFuW0Oz89zPBt3BqxdPEXsWiHF7u_lXF5XKiGRH_zv-GFrf2XhouLMzJ1CzxSkc_igk2ISXrirQyKKBDkwfZX4lmobmDzZHPS_LpfYqF43U2gYfFa1nCoWyVMqUkVtYi96yaBki2YvpYws-sqf3bi_adkmIZjgmZWQSqmhKFWGWKCWIFw0lXYKt5I47FUDPCZeefZpUJNyJGDtBscOpYI4RQ86gUcwLew6IaO_PpJRKluQ0kVob73s7SRxN4pwbdQHNgMrkc1MIY7IF5PLv6Ss4CMBX0YH4GhrlYmVvYM-sy9lycVvd3hdoBJmK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gGh8XH2B8WxOPLuy23W578kDcgPKKwcCNdLst4bIYWPj9tgtBTbx4a9o0aWYmM_NN5wHwmFgbLl3ojSkmLUBh2kuYYA7z-ImkJuXCFMMmom6Xj0aiX4KnbS2M1rpIPtM1tyz-8tOZWrpQWV1EwoK5cAd2Q0pxsK7W2updHmG2Dw-bLpr1VjfuNXodK6DctzgQ49rm-q85KoUZiY__94ATqH7X46H-1tKcQklnZ3D0o5VgBV4bMkNDjXqJw_ootifexI1_0ClqWmnOE6t00VCutPNS0WoqkWtMJVXumbnW6D32Fi6XPZs8V-Ejfhk0mt5mToI3xT7JPRVQSUMqCdNESk6scEhhAqxFZCIjHdlTEgmLP1XIg8hwHxtOscEhZ4YRRc6hnM0yfQGIJNajscQVLEhpIJJEWe_bCGJo4KeRkpdQcVQZf65bYYw3BLn6e_seDpqDTnvcbnXfruHQMaHIFcQ3UM7nS30Le2qVTxfzu4KTX5bUnNE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Annual+Joint+Conference+of+the+IEEE+Computer+and+Communications+Societies&rft.atitle=Can+We+Obtain+Fine-grained+Heartbeat+Waveform+via+Contact-free+RF-sensing%3F&rft.au=Zhang%2C+Shujie&rft.au=Zheng%2C+Tianyue&rft.au=Chen%2C+Zhe&rft.au=Luo%2C+Jun&rft.date=2022-05-02&rft.pub=IEEE&rft.eissn=2641-9874&rft.spage=1759&rft.epage=1768&rft_id=info:doi/10.1109%2FINFOCOM48880.2022.9796905&rft.externalDocID=9796905