Lossless Coding of Multimodal Image Pairs Based on Image-To-Image Translation
Multimodal image coding often uses standard encoding algorithms, which do not exploit multimodality characteristics. This paper proposes a new cross-modality prediction approach for lossless coding of multimodal images, based on a Generative Adversarial Network (GAN). The GAN is added to the predict...
Saved in:
| Published in: | European Workshop on Visual Information Processing pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
11.09.2022
|
| Subjects: | |
| ISSN: | 2471-8963 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multimodal image coding often uses standard encoding algorithms, which do not exploit multimodality characteristics. This paper proposes a new cross-modality prediction approach for lossless coding of multimodal images, based on a Generative Adversarial Network (GAN). The GAN is added to the prediction loop of the Versatile Video Coding (VVC) lossless encoder to perform cross-modality translation of an image to its counterpart modality. Then, such synthesized image is used as reference for inter prediction, followed by further optimization that includes rescaling and brightness adjustment. A publicly available dataset of Positron Emission Tomography (PET) and Computed Tomography (CT) image pairs is used to assess the performance of the proposed multimodal lossless image coding framework. In comparison with single modality coding using the VVC standard, average coding gains of 6.83% are achieved for the inter-coded PET images. |
|---|---|
| AbstractList | Multimodal image coding often uses standard encoding algorithms, which do not exploit multimodality characteristics. This paper proposes a new cross-modality prediction approach for lossless coding of multimodal images, based on a Generative Adversarial Network (GAN). The GAN is added to the prediction loop of the Versatile Video Coding (VVC) lossless encoder to perform cross-modality translation of an image to its counterpart modality. Then, such synthesized image is used as reference for inter prediction, followed by further optimization that includes rescaling and brightness adjustment. A publicly available dataset of Positron Emission Tomography (PET) and Computed Tomography (CT) image pairs is used to assess the performance of the proposed multimodal lossless image coding framework. In comparison with single modality coding using the VVC standard, average coding gains of 6.83% are achieved for the inter-coded PET images. |
| Author | Parracho, Joao O. Assuncao, Pedro A. A. Thomaz, Lucas A. Faria, Sergio M. M. Tavora, Luis M. N. |
| Author_xml | – sequence: 1 givenname: Joao O. surname: Parracho fullname: Parracho, Joao O. email: jparracho@co.it.pt organization: Instituto de Telecomunicações,Leiria,Portugal – sequence: 2 givenname: Lucas A. surname: Thomaz fullname: Thomaz, Lucas A. email: lucas.thomaz@co.it.pt organization: Instituto de Telecomunicações,Leiria,Portugal – sequence: 3 givenname: Luis M. N. surname: Tavora fullname: Tavora, Luis M. N. email: luis.tavora@co.it.pt organization: Instituto de Telecomunicações,Leiria,Portugal – sequence: 4 givenname: Pedro A. A. surname: Assuncao fullname: Assuncao, Pedro A. A. email: amado@co.it.pt organization: Instituto de Telecomunicações,Leiria,Portugal – sequence: 5 givenname: Sergio M. M. surname: Faria fullname: Faria, Sergio M. M. email: sergio.faria@co.it.pt organization: Instituto de Telecomunicações,Leiria,Portugal |
| BookMark | eNotkL1OwzAURg0CiVL6BAz4BRJ87fhvhKhApFZ0aFkrJ76ujJIYxWXg7RnS6ZPOkc7w3ZObMY1IyBOwEoDZ5_Xhq9lJYY0tOeO8tJZzzdUVWVltQClZKcWFuCYLXmkojFXijqxy_maMgQJQrFqQ7Sbl3GPOtE4-jieaAt3-9uc4JO962gzuhHTn4pTpq8voaRpnWOxTMdv95Mbcu3NM4wO5Da7PuLrskhze1vv6o9h8vjf1y6aInIlz0QYTWiM6CWCtrDoPgXdSt1UHLYgQ0AeQzAVkHffSG221ZRJNcBI1VkEsyePcjYh4_Jni4Ka_4-UA8Q9MtFIg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/EUVIP53989.2022.9922726 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781665466233 1665466235 |
| EISSN | 2471-8963 |
| EndPage | 6 |
| ExternalDocumentID | 9922726 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i203t-bf8fb83c5119954cd1f2c57b4c1b13ffedf150afe0c2d5d8797905e8fa5e7e4f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000886233300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:27:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-bf8fb83c5119954cd1f2c57b4c1b13ffedf150afe0c2d5d8797905e8fa5e7e4f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9922726 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept.-11 |
| PublicationDateYYYYMMDD | 2022-09-11 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | European Workshop on Visual Information Processing |
| PublicationTitleAbbrev | EUVIP |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001611604 |
| Score | 2.2008965 |
| Snippet | Multimodal image coding often uses standard encoding algorithms, which do not exploit multimodality characteristics. This paper proposes a new cross-modality... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computed tomography Generative adversarial networks Generative predictive coding Image coding Information processing Learning based prediction Lossless image coding Multimodal image coding Prediction algorithms Versatile Video Coding Video coding Visualization |
| Title | Lossless Coding of Multimodal Image Pairs Based on Image-To-Image Translation |
| URI | https://ieeexplore.ieee.org/document/9922726 |
| WOSCitedRecordID | wos000886233300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8MgFJa27LBTt7Vjv_Gw42yjxhivKy0rdCWHtvRWEn1CoU1Gf-zvnyahZbDLbqI-BMX3qe_7ngi96lSw2HBKQHIgoRWCpFQByQKVWaApVyU3ZzGR02m8XKqkgd5OWhgAKMln0PPFMpZvCn30T2V9n0NVsqiJmlJGlVbr_J4SURoFYU3hooHqD-eLcSLcYF6Pwlivtv71jUqJIqP2_8a_Qt2zHA8nJ6C5Rg3Ib1C7Pj_ienfuO-hz4hBv41wXHhS-Jy4sLgW228KkGzzeOt-BEx_Awe8OvAwu8qqSzApStZbQVdHjumg-Gs4GH6T-LoGsWcAPJLOxzWKufWRQiVAbapkWMgs1zSi3Fox1p7_UQqCZESaWyifngtimAiSElt-iVl7kcIcwZak2xjIuqAlF5m7J7pakJA117CxSc486fnZWX1VGjFU9MQ9_Vz-iS78AnmVB6RNqHXZHeEYX-vuw3u9eymX8ARbInoU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JawIxGA3WFtqTbbV0bw49NjrZnMm1RVE6yhxUvEkmCwg6U1z6-5vMDEqhl95CFhK-kLwk33tfAHhVkpNIU4xMSA1ilnMksTAoDURqDZZUFNycWRyOx9F8LpIaeDtoYYwxBfnMtH2y8OXrXO39U1nHx1ANSfcEnHLGSFCqtY4vKl2MuwGrSFw4EJ3edDZMuOvOK1IIaVftf32kUuBIv_G_EVyC1lGQB5MD1FyBmsmuQaM6QcJqfW6bYBQ7zFu5zQt-5L4mzC0sJLbrXMsVHK7d7gET78KB7w6-NMyzMhNNclSWFuBVEuRaYNrvTT4GqPowAS1JQHcotZFNI6q8b1BwpjS2RPEwZQqnmFprtHXnP2lNoIjmOgqFD89lIiu5CQ2z9AbUszwztwBiIpXWllCONeOpuye7e5IIMVORayH1HWh66yy-ypgYi8ow939nv4DzwWQUL-Lh-PMBXPjJ8JwLjB9BfbfZmydwpr53y-3muZjSH4VRocw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=European+Workshop+on+Visual+Information+Processing&rft.atitle=Lossless+Coding+of+Multimodal+Image+Pairs+Based+on+Image-To-Image+Translation&rft.au=Parracho%2C+Joao+O.&rft.au=Thomaz%2C+Lucas+A.&rft.au=Tavora%2C+Luis+M.+N.&rft.au=Assuncao%2C+Pedro+A.+A.&rft.date=2022-09-11&rft.pub=IEEE&rft.eissn=2471-8963&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FEUVIP53989.2022.9922726&rft.externalDocID=9922726 |