Convolutional Dictionary Learning in Hierarchical Networks

Filter banks are a popular tool for the analysis of piecewise smooth signals such as natural images. Motivated by the empirically observed properties of scale and detail coefficients of images in the wavelet domain, we propose a hierarchical deep generative model of piecewise smooth signals that is...

Full description

Saved in:
Bibliographic Details
Published in:2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) pp. 131 - 135
Main Authors: Zazo, Javier, Tolooshams, Bahareh, Ba, Demba, Paulson, Harvard John A.
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Filter banks are a popular tool for the analysis of piecewise smooth signals such as natural images. Motivated by the empirically observed properties of scale and detail coefficients of images in the wavelet domain, we propose a hierarchical deep generative model of piecewise smooth signals that is a recursion across scales: the low pass scale coefficients at one layer are obtained by filtering the scale coefficients at the next layer, and adding a high pass detail innovation obtained by filtering a sparse vector. This recursion describes a linear dynamic system that is a non-Gaussian Markov process across scales and is closely related to multilayer-convolutional sparse coding (ML-CSC) generative model for deep networks, except that our model allows for deeper architectures, and combines sparse and non-sparse signal representations. We propose an alternating minimization algorithm for learning the filters in this hierarchical model given observations at layer zero, e.g., natural images. The algorithm alternates between a coefficient-estimation step and a filter update step. The coefficient update step performs sparse (detail) and smooth (scale) coding and, when unfolded, leads to a deep neural network. We use MNIST to demonstrate the representation capabilities of the model, and its derived features (coefficients) for classification.
AbstractList Filter banks are a popular tool for the analysis of piecewise smooth signals such as natural images. Motivated by the empirically observed properties of scale and detail coefficients of images in the wavelet domain, we propose a hierarchical deep generative model of piecewise smooth signals that is a recursion across scales: the low pass scale coefficients at one layer are obtained by filtering the scale coefficients at the next layer, and adding a high pass detail innovation obtained by filtering a sparse vector. This recursion describes a linear dynamic system that is a non-Gaussian Markov process across scales and is closely related to multilayer-convolutional sparse coding (ML-CSC) generative model for deep networks, except that our model allows for deeper architectures, and combines sparse and non-sparse signal representations. We propose an alternating minimization algorithm for learning the filters in this hierarchical model given observations at layer zero, e.g., natural images. The algorithm alternates between a coefficient-estimation step and a filter update step. The coefficient update step performs sparse (detail) and smooth (scale) coding and, when unfolded, leads to a deep neural network. We use MNIST to demonstrate the representation capabilities of the model, and its derived features (coefficients) for classification.
Author Zazo, Javier
Tolooshams, Bahareh
Ba, Demba
Paulson, Harvard John A.
Author_xml – sequence: 1
  givenname: Javier
  surname: Zazo
  fullname: Zazo, Javier
  organization: School of Engineering and Applied Sciences Harvard University
– sequence: 2
  givenname: Bahareh
  surname: Tolooshams
  fullname: Tolooshams, Bahareh
  organization: School of Engineering and Applied Sciences Harvard University
– sequence: 3
  givenname: Demba
  surname: Ba
  fullname: Ba, Demba
  organization: School of Engineering and Applied Sciences Harvard University
– sequence: 4
  givenname: Harvard John A.
  surname: Paulson
  fullname: Paulson, Harvard John A.
  organization: School of Engineering and Applied Sciences Harvard University
BookMark eNotj8tOwzAURI0EC1r4Ajb5gQRfP-KYXRQeRQotErCu_LgBi2AjN4D4ewJ0NbM4OppZkMOYIhJSAK0AqD7v2ruH9l7IWtUVo6ArTRkTgh6QBSjWgJRCy2Ny0aX4mcaPKaRoxuIyuL-Wv4seTY4hPhchFquA2WT3EtzMrHH6Svl1d0KOBjPu8HSfS_J0ffXYrcp-c3PbtX0ZGOVTaZ2n1EgQFDxDlHVDrXfGaQVKcgvK1x4YNh4F48oKPUiLciYHJ39pviRn_96AiNv3HN7medv9Hf4DVKlGQA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAMSAP45676.2019.9022440
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728155495
9781728155494
EndPage 135
ExternalDocumentID 9022440
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-bcd00a51401d2ee5680bdcac971753b17d6d12e8de4237b49f5be52eefc5e5683
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556233000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:42 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-bcd00a51401d2ee5680bdcac971753b17d6d12e8de4237b49f5be52eefc5e5683
PageCount 5
ParticipantIDs ieee_primary_9022440
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
PublicationTitleAbbrev CAMSAP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7467786
Snippet Filter banks are a popular tool for the analysis of piecewise smooth signals such as natural images. Motivated by the empirically observed properties of scale...
SourceID ieee
SourceType Publisher
StartPage 131
SubjectTerms Analytical models
Convolution
Convolutional codes
Convolutional dictionary learning
deep networks
Dictionaries
Encoding
hierarchical models
Machine learning
sparse coding
Wavelet analysis
Title Convolutional Dictionary Learning in Hierarchical Networks
URI https://ieeexplore.ieee.org/document/9022440
WOSCitedRecordID wos000556233000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eBJpRXf5ODRtOluNrvxJtXS07IHhd5KHhNZKFvpC_z33WTXiuDFW0gGQh4w8yXfNwPwwCKDjmecasUs5SgkVVHkqHA-PpA6FsKEYhNpnmezmSw68HjQwiBiIJ_hwDfDX75dmq1_KhtK73B4DdCP0lQ0Wq1vcg6Tw3ENfZ-LOiBIPfVgJAet-a-6KcFtTE7_N-EZ9H_0d6Q4eJZz6GDVg6d6cNdeFLUgL2VQJKjVF2lzpH6QsiLT0iuKQ4GTBckbjve6D--T17fxlLaVD2gZsXhDtbGMqcSDHxshJiJj2hplZOoTa-pRaoUdRZhZ9KwWzaVLNCa1pTOJt44voFstK7wEEmvruLIojdNcZ1K5GgByFmvOFTKTXUHPr3v-2SS3mLdLvv67-wZO_NY2fI5b6G5WW7yDY7PblOvVfTiRPRBAj3o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfSk0opvc_Bo2nQ3-4g3qZaKdemhQm8lj4ksyFb6Av-9m-xaEbx4C8mEMElgZpLvmwG4YYFGy1NOlWSGcowFlUFgaWydfyBUGMfaF5tIsiydTsW4AbdbLgwievAZdlzT_-WbuV67p7KucAaHlwH6TsR5wCq21jc8h4luvwx-78elS5A48EFPdOoJvyqneMMxOPjfkofQ_mHgkfHWthxBA4sW3JWDm_qqyHfykHtOglx8kjpL6hvJCzLMHafYlzh5J1mF8l624XXwOOkPaV37gOYBC1dUacOYjFz4YwLEKE6ZMlpqkbjUmqqXmNj0AkwNOlyL4sJGCqNS0urISYfH0CzmBZ4ACZWxXBoU2iquUiFtGQJyFirOJTKdnkLL6T37qNJbzGqVz_7uvoa94eRlNBs9Zc_nsO-2uUJ3XEBztVjjJezqzSpfLq786XwBtmeSwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+8th+International+Workshop+on+Computational+Advances+in+Multi-Sensor+Adaptive+Processing+%28CAMSAP%29&rft.atitle=Convolutional+Dictionary+Learning+in+Hierarchical+Networks&rft.au=Zazo%2C+Javier&rft.au=Tolooshams%2C+Bahareh&rft.au=Ba%2C+Demba&rft.au=Paulson%2C+Harvard+John+A.&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=131&rft.epage=135&rft_id=info:doi/10.1109%2FCAMSAP45676.2019.9022440&rft.externalDocID=9022440