PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images
While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects instead of rasterized output. This paper introduces PolyWorld, a neural network that directly extracts...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 1938 - 1947 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2022
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects instead of rasterized output. This paper introduces PolyWorld, a neural network that directly extracts building vertices from an image and connects them correctly to create precise polygons. The model predicts the connection strength between each pair of vertices using a graph neural network and estimates the assignments by solving a differentiable optimal transport problem. Moreover, the vertex positions are optimized by minimizing a combined segmentation and polygonal angle difference loss. PolyWorld significantly outperforms the state of the art in building polygonization and achieves not only notable quantitative results, but also produces visually pleasing building polygons. Code and trained weights are publicly available at https://thub.com/zorzis/yWorl-PoldPretrainedNetwork. |
|---|---|
| AbstractList | While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise vector polygons of extracted objects instead of rasterized output. This paper introduces PolyWorld, a neural network that directly extracts building vertices from an image and connects them correctly to create precise polygons. The model predicts the connection strength between each pair of vertices using a graph neural network and estimates the assignments by solving a differentiable optimal transport problem. Moreover, the vertex positions are optimized by minimizing a combined segmentation and polygonal angle difference loss. PolyWorld significantly outperforms the state of the art in building polygonization and achieves not only notable quantitative results, but also produces visually pleasing building polygons. Code and trained weights are publicly available at https://thub.com/zorzis/yWorl-PoldPretrainedNetwork. |
| Author | Zorzi, Stefano Fraundorfer, Friedrich Habenschuss, Stefan Bazrafkan, Shabab |
| Author_xml | – sequence: 1 givenname: Stefano surname: Zorzi fullname: Zorzi, Stefano email: stefano.zorzi@icg.tugraz.at organization: Graz University of Technology – sequence: 2 givenname: Shabab surname: Bazrafkan fullname: Bazrafkan, Shabab email: sbazrafkan@blackshark.ai organization: Blackshark.ai – sequence: 3 givenname: Stefan surname: Habenschuss fullname: Habenschuss, Stefan email: shabenschuss@blackshark.ai organization: Blackshark.ai – sequence: 4 givenname: Friedrich surname: Fraundorfer fullname: Fraundorfer, Friedrich email: fraundorfer@icg.tugraz.at organization: Graz University of Technology |
| BookMark | eNotj81OAjEURqvRREGeQBd9gcHblum07pQgkhAk_rEknektVMsM6ZQgby9GV99ZnJzk65CzuqmRkBsGfcZA3w4_5i85l0r1OXDeB2BKn5AOkzIfSD2Q4pRcMpAik5rpC9Jr208AEJwxqdUlWcybcFg0Mdg7-ourpjaBPux8sL5e0dF3iqZKvqnp3qc1HUezXdMZ7uLRmmHaN_Grpb6mryZhCD4hnWzMCtsrcu5MaLH3v13y_jh6Gz5l0-fxZHg_zTwHkbKylIUQogSjcls6VIUsc1eZ0gqHMmdWGdRQVKoqrJTcgUPrquOTwhWIlRVdcv3X9Yi43Ea_MfGw1ErBgOfiB0jrVjM |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.00189 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 1947 |
| ExternalDocumentID | 9880425 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: BMDW funderid: 10.13039/501100012416 – fundername: SFG funderid: 10.13039/501100007945 – fundername: FFG funderid: 10.13039/501100004955 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-bb67333b0a85dbfe876b5fcabd3fe651d8ae907c8c7d662f0fedfc9197f7eecd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867754202010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-bb67333b0a85dbfe876b5fcabd3fe651d8ae907c8c7d662f0fedfc9197f7eecd3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9880425 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.529208 |
| Snippet | While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1938 |
| SubjectTerms | Buildings Codes Computer network reliability Computer vision grouping and shape analysis Image segmentation Photogrammetry and remote sensing; Deep learning architectures and techniques; Segmentation Predictive models Satellites |
| Title | PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images |
| URI | https://ieeexplore.ieee.org/document/9880425 |
| WOSCitedRecordID | wos000867754202010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGpQIt4ywMjoXGc-MFI1QJLFfHsVsX2GVWiKWpSBP8eO4kKAwubFUWKZJ_tu8v3QOhccKm1spELXuIKFGJNIGKjAgaEE2t5yExcmU3wyURMpzJtoYsNFwYAKvAZXPph9S_fLPXat8oG0gWbi7E2anPOa67Wpp9CXSXDpGjYcSSUg-Fzeu_FTDyAK_KynMR7uf_yUKmukHH3fx_fQf0fLh5ON7fMLmpBvoe6TfKIm61Z9NBLunz7qqAxV9gPX32Kja8b12s8-ixXNYcB-9YrvvFC1dhLc7i3JjUWvMDzHD9klUZnCfhu4c6aoo-exqPH4W3QuCYE8yikZaAU45RSFWYiMcqCO-5UYnWmDLXAEmJEBq4i1kJzw1hkQwvGakkktxxAG7qPOvkyhwOEXa5nFFE0VAnEsZHCxFQzoqXNMqOEOUQ9P0-z91oYY9ZM0dHfj4_Rtl-IGmd1gjrlag2naEt_lPNidVat5jfSr6PG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG8QTfSECsa3PXh0sq5bHx4lIERciKJyI-vLkOgwbBj97223BT148dYsS5a0X9vv-_Z7AHDOKJdSmMAGL7IFCjLKY6ESHtGIImOoT1RYmE3QOGaTCR_VwMWKC6O1LsBn-tINi3_5ai6XrlXW5jbYbIytgfUoDANUsrVWHRVsaxnCWcWPQz5vd55G907OxEG4AifMiZyb-y8XleIS6TX-9_lt0Pph48HR6p7ZATWd7oJGlT7CanNmTfA8mr9-FeCYK-iGLy7JhteV7zXsfuaLksUAXfMV3jipaujEOexbcYkGz-AshQ9JodKZazh4s6dN1gKPve640_cq3wRvFvg494QgFGMs_IRFShhtDzwRGZkIhY0mEVIs0bYmlkxSRUhgfKOVkRxxaqjWUuE9UE_nqd4H0GZ7SiCBfRHpMFScqRBLgiQ3SaIEUweg6eZp-l5KY0yrKTr8-_EZ2OyP74bT4SC-PQJbblFK1NUxqOeLpT4BG_Ijn2WL02JlvwGCrqcN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=PolyWorld%3A+Polygonal+Building+Extraction+with+Graph+Neural+Networks+in+Satellite+Images&rft.au=Zorzi%2C+Stefano&rft.au=Bazrafkan%2C+Shabab&rft.au=Habenschuss%2C+Stefan&rft.au=Fraundorfer%2C+Friedrich&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1938&rft.epage=1947&rft_id=info:doi/10.1109%2FCVPR52688.2022.00189&rft.externalDocID=9880425 |