Memory Efficient Edge Addition Designs for Large and Dynamic Social Networks

The availability of large volumes of social network data from a variety of social and socio-technical networks has greatly increased. These networks provide critical insights into understanding various domains including business, healthcare, and disaster management. The relationships and interaction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) s. 975 - 984
Hlavní autoři: Santos, Eunice E., Murugappan, Vairavan, Korah, John
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The availability of large volumes of social network data from a variety of social and socio-technical networks has greatly increased. These networks provide critical insights into understanding various domains including business, healthcare, and disaster management. The relationships and interactions between different entities represented in most of these data sources are constantly evolving. Graph processing and analysis methodologies that can effectively integrate data changes while minimizing recomputations are needed to handle these dynamic networks. In addition, the size of these information sources is constantly increasing, therefore we need designs that can perform analysis that are memory efficient in order to address resource constraints. In this paper, we show how our anytime anywhere framework can be used to construct memory-efficient closeness centrality algorithms. In particular, we will show how dynamic edge additions can be efficiently handled in the proposed scheme.
AbstractList The availability of large volumes of social network data from a variety of social and socio-technical networks has greatly increased. These networks provide critical insights into understanding various domains including business, healthcare, and disaster management. The relationships and interactions between different entities represented in most of these data sources are constantly evolving. Graph processing and analysis methodologies that can effectively integrate data changes while minimizing recomputations are needed to handle these dynamic networks. In addition, the size of these information sources is constantly increasing, therefore we need designs that can perform analysis that are memory efficient in order to address resource constraints. In this paper, we show how our anytime anywhere framework can be used to construct memory-efficient closeness centrality algorithms. In particular, we will show how dynamic edge additions can be efficiently handled in the proposed scheme.
Author Santos, Eunice E.
Murugappan, Vairavan
Korah, John
Author_xml – sequence: 1
  givenname: Eunice E.
  surname: Santos
  fullname: Santos, Eunice E.
  email: eesantos@illinois.edu
  organization: University of Illinois at Urbana-Champaign,School of Information Sciences,Champaign,IL,USA
– sequence: 2
  givenname: Vairavan
  surname: Murugappan
  fullname: Murugappan, Vairavan
  email: vm13@illinois.edu
  organization: University of Illinois at Urbana-Champaign,School of Information Sciences,Champaign,IL,USA
– sequence: 3
  givenname: John
  surname: Korah
  fullname: Korah, John
  email: jkorah@cpp.edu
  organization: California State Polytechnic University,Department of Computer Science,Pomona,CA,USA
BookMark eNotzN1KwzAYgOEIeuCmVyBIbqA1X36bw7FWN6g6mOLhyPIzgmsiaUF69wp69B488C7QZcrJI3QPpAYg-mG7a3f7D0GVhpoSCjUhIMQFWoCUgjOhFFyj_tkPucy4CyHa6NOEO3fyeOVcnGJOuPVjPKURh1xwb8ovmeRwOyczRIv32UZzxi9--s7lc7xBV8GcR3_73yV6f-ze1puqf33arld9FSlhU3U0DgwIR7QNVoAWTh8DkY3lSjlJmLCqcYZ7KrnRkiltRGCuMQyCA8cpW6K7v2_03h--ShxMmQ-aSyKlYj8bOksI
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPSW52791.2021.00155
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665435771
9781665435772
EndPage 984
ExternalDocumentID 9460667
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-bad1a15d09cfc5195d9bf068c477d6035c78da4e264a96379a5f3d8a31fd1d423
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000689576200125&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:10 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-bad1a15d09cfc5195d9bf068c477d6035c78da4e264a96379a5f3d8a31fd1d423
PageCount 10
ParticipantIDs ieee_primary_9460667
PublicationCentury 2000
PublicationDate 2021-June
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationTitle 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
PublicationTitleAbbrev IPDPSW
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7668223
Snippet The availability of large volumes of social network data from a variety of social and socio-technical networks has greatly increased. These networks provide...
SourceID ieee
SourceType Publisher
StartPage 975
SubjectTerms Anytime anywhere algorithms
Conferences
Disaster management
Distributed processing
Graph algorithms and analysis
Heuristic algorithms
Large-scale dynamic social network analysis
Medical services
Memory efficient graph algorithms
Memory management
Parallel/Distribated algorithms
Social networking (online)
Title Memory Efficient Edge Addition Designs for Large and Dynamic Social Networks
URI https://ieeexplore.ieee.org/document/9460667
WOSCitedRecordID wos000689576200125&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_ycGjaTe72U1yFNuiUMuCir2VJJOVXrbSD8F_b5ItFcGLtxBIAhPCvCTvzQO4MR52u7xwVPFUUy4do6ZSkqLIrM0l-vubjWYTYjKR06kqW3C708I45yL5zPVCM_7l48JuwlNZX_EAt8Ue7AlRNFqtreiXJar_WA7K57c8FSrc-1LWi3jgl2tKTBqjw_8tdwTdH_UdKXd55Rharu7A-ClQYr_IMJZ88OPIEN8duUOMnCsyiEyMFfEYlIwDu5voGsmg8ZsnjQiXTBrO96oLr6Phy_0D3Toh0HmaZGtqNDLNckyUrWyoB4PKVEkhLRcCiyTLrZCoufPoRvsTJZTOqwylzliFDD1iOoF2vajdKRCmeeInsR6uSu6EMtZm2vCUG-6RhOJn0AmRmH00xS5m2yCc_919AQch1A136hLa6-XGXcG-_VzPV8vruEPfcUmUSg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orf5uDRbTe72SY5im1pcbsUrNhbyWay0stW-iH4702ypSJ48RYCSWBCyJvkvXkA97mF3SbpmECySAVMGBrkhRQB8ljrRKDN37Q3m-BZJqZTOa7Bw04LY4zx5DPTck3_l48LvXFPZW3JHNzme7CfMJv3VGqtreyXhrI9HHfHL29JxKXL_CLa8ojgl2-Kvzb6x_9b8ASaP_o7Mt7dLKdQM2UD0pEjxX6Rni_6YMeRHr4b8ojoWVek67kYK2JRKEkdv5uoEkm3cpwnlQyXZBXre9WE135v8jQItl4IwTwK43WQK6SKJhhKXWhXEQZlXoQdoRnn2AnjRHOBihmLb5Q9U1yqpIhRqJgWSNFipjOol4vSnAOhioV2Em0Bq2CGy1zrWOUsYjmzWEKyC2i4SMw-qnIXs20QLv_uvoPDwWSUztJh9nwFRy7sFZPqGurr5cbcwIH-XM9Xy1u_W99YOZeR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=Memory+Efficient+Edge+Addition+Designs+for+Large+and+Dynamic+Social+Networks&rft.au=Santos%2C+Eunice+E.&rft.au=Murugappan%2C+Vairavan&rft.au=Korah%2C+John&rft.date=2021-06-01&rft.pub=IEEE&rft.spage=975&rft.epage=984&rft_id=info:doi/10.1109%2FIPDPSW52791.2021.00155&rft.externalDocID=9460667