The Promising Role of Representation Learning for Distributed Computing Continuum Systems
The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, re...
Uložené v:
| Vydané v: | 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE) s. 126 - 132 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.08.2022
|
| Predmet: | |
| ISSN: | 2642-6587 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, representation learning extracts the features (meaningful information) and underlying explanatory factors from the given datasets. With these benefits, using ReL for DCCS to improve its performance by monitoring the devices will increase the utilization efficiency, zero downtime, etc. In this context, this paper discusses the promising role of ReL for DCCS in terms of different aspects, including device condition monitoring, predictions, management of the systems, etc. This paper also provides a list of ReL algorithms and their pitfalls which helps DCCS by considering various constraints. In addition, this paper list different challenges imposed on ReL to analyze DCCS data. It also provides future research directions to make the systems autonomous, performing multiple tasks simultaneously with the help of other AI/ML approaches. |
|---|---|
| AbstractList | The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, representation learning extracts the features (meaningful information) and underlying explanatory factors from the given datasets. With these benefits, using ReL for DCCS to improve its performance by monitoring the devices will increase the utilization efficiency, zero downtime, etc. In this context, this paper discusses the promising role of ReL for DCCS in terms of different aspects, including device condition monitoring, predictions, management of the systems, etc. This paper also provides a list of ReL algorithms and their pitfalls which helps DCCS by considering various constraints. In addition, this paper list different challenges imposed on ReL to analyze DCCS data. It also provides future research directions to make the systems autonomous, performing multiple tasks simultaneously with the help of other AI/ML approaches. |
| Author | Dustdar, Schahram Donta, Praveen Kumar |
| Author_xml | – sequence: 1 givenname: Praveen Kumar surname: Donta fullname: Donta, Praveen Kumar email: pdonta@dsg.tuwien.ac.at organization: TU Wien,Distributed Systems Group,Vienna,Austria – sequence: 2 givenname: Schahram surname: Dustdar fullname: Dustdar, Schahram email: dustdar@dsg.tuwien.ac.at organization: TU Wien,Distributed Systems Group,Vienna,Austria |
| BookMark | eNotz81OAyEYhWE0mlhrr0AX3MBUYICBpRnrTzJJTVsXrhrofChJBxpgFr172-jqXTzJSc4tugoxAEIPlMwpJfpxvVwvhKiFnDPC2JwQwugFmulGUSkFb0TN6SWaMMlZJYVqbtAsZ28JZ7whXKgJ-tr8AP5IcfDZh2-8invA0eEVHBJkCMUUHwPuwKRwdhcTfva5JG_HAj1u43AYy1naGE4dxwGvj7nAkO_QtTP7DLP_TtHny2LTvlXd8vW9feoqz0hdKiuJ6sXOOWWJtUApMzunhXBMKqeANTVx5oRa9dTwhjrbW7tj2ilBlGGmnqL7v10PANtD8oNJx63W9PSa1L8Y4led |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SOSE55356.2022.00021 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665475341 166547534X |
| EISSN | 2642-6587 |
| EndPage | 132 |
| ExternalDocumentID | 9912640 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-b608d5cff8b0bbe112acf955f268f8e2730faf8b98d1a471fbdbbc29f8508a2a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942754700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:08:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-b608d5cff8b0bbe112acf955f268f8e2730faf8b98d1a471fbdbbc29f8508a2a3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9912640 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug. |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug. |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE) |
| PublicationTitleAbbrev | SOSE |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib042470458 ssib036329412 ssib056825933 |
| Score | 1.8902647 |
| Snippet | The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 126 |
| SubjectTerms | Causal inference Compute continuum Data mining Distributed computing Distributed systems Feature extraction Performance evaluation Prediction algorithms Representation learning Service-oriented systems engineering |
| Title | The Promising Role of Representation Learning for Distributed Computing Continuum Systems |
| URI | https://ieeexplore.ieee.org/document/9912640 |
| WOSCitedRecordID | wos000942754700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjoYljJ_YMrZhK1YJUpiqO71AlSFBp-P2ck7RlYGGLz4t1l-jdxffeMXYjpQW0QgexAREQ4tM3F-UykCgQUUWAKdbDJtLxWM_nZtJht1suDADUzWdw5x_ru3xX5pX_VTagXIbwmwr0vTRNG67W5t2Jk1gYuYNqKWTq7wA3a5VQKUTFe8uei0IzmD3NhkrFyjcqiFq20wuG_pqxUkPM6PB_hzti_R1Xj0-2KHTMOlD02CtF31spiGTk0_IdeIl8Wre9tmyjgrfaqm-cElf-4BV0_fArcLwZ9eB3vHjVsqiqD95Km_fZy2j4fP8YtEMUgqUI43Vgk1A7lSNqG1oLlF5lORqlUCQaNVD2EmJGm0a7KCOkQuuszYVBTalbJrL4hHWLsoBTxjFJbIjSaRk7aY21SeS0Mxojm-Vg0jPW825ZfDY6GYvWI-d_my_Ygfd700x3ybrrVQVXbD__Xi-_Vtd1cH8AK_elvQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWqggQToBbxjQdGQhPHTuwZWoEopWqLVKYqjn2oEiSoNPx-zknaMrCwJecl8iV6d_G99wi54lxb0Ex6obLMQ8THby5IuceBAYAILMRQmk3Eg4GcTtWwQa7XXBhrbTl8Zm_cZXmWb_K0cL_KOljLIH5jg74lOGdBxdZavT1hFDLFN2DNGY_dKeDqXkTYDGH7XvPnAl91xs_jrhChcKMKrBTudJKhv1xWSpDp7f3v8fZJe8PWo8M1Dh2Qhs1a5BXz76KYRgzSUf5uaQ50VA6-1nyjjNbqqm8US1d65zR0nf2VNbQye3ArTr5qnhXFB63Fzdvkpded3N57tY2CN2d-uPR05EsjUgCpfa0tFlhJCkoIYJEEabF-8SHBRSVNkCBWgTZap0yBxOItYUl4SJpZntkjQiGKtA_cSB4arpXWUWCkURICnaRWxcek5bZl9lkpZczqHTn5O3xJdu4nT_1Z_2HweEp2XQ6q0boz0lwuCntOttPv5fxrcVEm-gf5MqkE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Service-Oriented+System+Engineering+%28SOSE%29&rft.atitle=The+Promising+Role+of+Representation+Learning+for+Distributed+Computing+Continuum+Systems&rft.au=Donta%2C+Praveen+Kumar&rft.au=Dustdar%2C+Schahram&rft.date=2022-08-01&rft.pub=IEEE&rft.eissn=2642-6587&rft.spage=126&rft.epage=132&rft_id=info:doi/10.1109%2FSOSE55356.2022.00021&rft.externalDocID=9912640 |