The Promising Role of Representation Learning for Distributed Computing Continuum Systems

The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 IEEE International Conference on Service-Oriented System Engineering (SOSE) s. 126 - 132
Hlavní autori: Donta, Praveen Kumar, Dustdar, Schahram
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2022
Predmet:
ISSN:2642-6587
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, representation learning extracts the features (meaningful information) and underlying explanatory factors from the given datasets. With these benefits, using ReL for DCCS to improve its performance by monitoring the devices will increase the utilization efficiency, zero downtime, etc. In this context, this paper discusses the promising role of ReL for DCCS in terms of different aspects, including device condition monitoring, predictions, management of the systems, etc. This paper also provides a list of ReL algorithms and their pitfalls which helps DCCS by considering various constraints. In addition, this paper list different challenges imposed on ReL to analyze DCCS data. It also provides future research directions to make the systems autonomous, performing multiple tasks simultaneously with the help of other AI/ML approaches.
AbstractList The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, representation learning extracts the features (meaningful information) and underlying explanatory factors from the given datasets. With these benefits, using ReL for DCCS to improve its performance by monitoring the devices will increase the utilization efficiency, zero downtime, etc. In this context, this paper discusses the promising role of ReL for DCCS in terms of different aspects, including device condition monitoring, predictions, management of the systems, etc. This paper also provides a list of ReL algorithms and their pitfalls which helps DCCS by considering various constraints. In addition, this paper list different challenges imposed on ReL to analyze DCCS data. It also provides future research directions to make the systems autonomous, performing multiple tasks simultaneously with the help of other AI/ML approaches.
Author Dustdar, Schahram
Donta, Praveen Kumar
Author_xml – sequence: 1
  givenname: Praveen Kumar
  surname: Donta
  fullname: Donta, Praveen Kumar
  email: pdonta@dsg.tuwien.ac.at
  organization: TU Wien,Distributed Systems Group,Vienna,Austria
– sequence: 2
  givenname: Schahram
  surname: Dustdar
  fullname: Dustdar, Schahram
  email: dustdar@dsg.tuwien.ac.at
  organization: TU Wien,Distributed Systems Group,Vienna,Austria
BookMark eNotz81OAyEYhWE0mlhrr0AX3MBUYICBpRnrTzJJTVsXrhrofChJBxpgFr172-jqXTzJSc4tugoxAEIPlMwpJfpxvVwvhKiFnDPC2JwQwugFmulGUSkFb0TN6SWaMMlZJYVqbtAsZ28JZ7whXKgJ-tr8AP5IcfDZh2-8invA0eEVHBJkCMUUHwPuwKRwdhcTfva5JG_HAj1u43AYy1naGE4dxwGvj7nAkO_QtTP7DLP_TtHny2LTvlXd8vW9feoqz0hdKiuJ6sXOOWWJtUApMzunhXBMKqeANTVx5oRa9dTwhjrbW7tj2ilBlGGmnqL7v10PANtD8oNJx63W9PSa1L8Y4led
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SOSE55356.2022.00021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665475341
166547534X
EISSN 2642-6587
EndPage 132
ExternalDocumentID 9912640
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-b608d5cff8b0bbe112acf955f268f8e2730faf8b98d1a471fbdbbc29f8508a2a3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942754700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:08:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b608d5cff8b0bbe112acf955f268f8e2730faf8b98d1a471fbdbbc29f8508a2a3
PageCount 7
ParticipantIDs ieee_primary_9912640
PublicationCentury 2000
PublicationDate 2022-Aug.
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE)
PublicationTitleAbbrev SOSE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib042470458
ssib036329412
ssib056825933
Score 1.8902647
Snippet The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases,...
SourceID ieee
SourceType Publisher
StartPage 126
SubjectTerms Causal inference
Compute continuum
Data mining
Distributed computing
Distributed systems
Feature extraction
Performance evaluation
Prediction algorithms
Representation learning
Service-oriented systems engineering
Title The Promising Role of Representation Learning for Distributed Computing Continuum Systems
URI https://ieeexplore.ieee.org/document/9912640
WOSCitedRecordID wos000942754700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjoYljJ_YMrZhK1YJUpiqO71AlSFBp-P2ck7RlYGGLz4t1l-jdxffeMXYjpQW0QgexAREQ4tM3F-UykCgQUUWAKdbDJtLxWM_nZtJht1suDADUzWdw5x_ru3xX5pX_VTagXIbwmwr0vTRNG67W5t2Jk1gYuYNqKWTq7wA3a5VQKUTFe8uei0IzmD3NhkrFyjcqiFq20wuG_pqxUkPM6PB_hzti_R1Xj0-2KHTMOlD02CtF31spiGTk0_IdeIl8Wre9tmyjgrfaqm-cElf-4BV0_fArcLwZ9eB3vHjVsqiqD95Km_fZy2j4fP8YtEMUgqUI43Vgk1A7lSNqG1oLlF5lORqlUCQaNVD2EmJGm0a7KCOkQuuszYVBTalbJrL4hHWLsoBTxjFJbIjSaRk7aY21SeS0Mxojm-Vg0jPW825ZfDY6GYvWI-d_my_Ygfd700x3ybrrVQVXbD__Xi-_Vtd1cH8AK_elvQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWqggQToBbxjQdGQhPHTuwZWoEopWqLVKYqjn2oEiSoNPx-zknaMrCwJecl8iV6d_G99wi54lxb0Ex6obLMQ8THby5IuceBAYAILMRQmk3Eg4GcTtWwQa7XXBhrbTl8Zm_cZXmWb_K0cL_KOljLIH5jg74lOGdBxdZavT1hFDLFN2DNGY_dKeDqXkTYDGH7XvPnAl91xs_jrhChcKMKrBTudJKhv1xWSpDp7f3v8fZJe8PWo8M1Dh2Qhs1a5BXz76KYRgzSUf5uaQ50VA6-1nyjjNbqqm8US1d65zR0nf2VNbQye3ArTr5qnhXFB63Fzdvkpded3N57tY2CN2d-uPR05EsjUgCpfa0tFlhJCkoIYJEEabF-8SHBRSVNkCBWgTZap0yBxOItYUl4SJpZntkjQiGKtA_cSB4arpXWUWCkURICnaRWxcek5bZl9lkpZczqHTn5O3xJdu4nT_1Z_2HweEp2XQ6q0boz0lwuCntOttPv5fxrcVEm-gf5MqkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Service-Oriented+System+Engineering+%28SOSE%29&rft.atitle=The+Promising+Role+of+Representation+Learning+for+Distributed+Computing+Continuum+Systems&rft.au=Donta%2C+Praveen+Kumar&rft.au=Dustdar%2C+Schahram&rft.date=2022-08-01&rft.pub=IEEE&rft.eissn=2642-6587&rft.spage=126&rft.epage=132&rft_id=info:doi/10.1109%2FSOSE55356.2022.00021&rft.externalDocID=9912640