SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation

This paper studies a practical domain adaptive (DA) semantic segmentation problem where only pseudo-labeled target data is accessible through a black-box model. Due to the domain gap and label shift between two domains, pseudo-labeled target data contains mixed closed-set and open-set label noises....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 7022 - 7031
Hlavní autoři: Guo, Xiaoqing, Liu, Jie, Liu, Tongliang, Yuan, Yixuan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2022
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper studies a practical domain adaptive (DA) semantic segmentation problem where only pseudo-labeled target data is accessible through a black-box model. Due to the domain gap and label shift between two domains, pseudo-labeled target data contains mixed closed-set and open-set label noises. In this paper, we propose a simplex noise transition matrix (SimT) to model the mixed noise distributions in DA semantic segmentation and formulate the problem as estimation of SimT. By exploiting computational geometry analysis and properties of segmentation, we design three complementary regularizers, i.e. volume regularization, anchor guidance, convex guarantee, to approximate the true SimT. Specifically, volume regularization minimizes the volume of simplex formed by rows of the non-square SimT, which ensures outputs of segmentation model to fit into the ground truth label distribution. To compensate for the lack of open-set knowledge, anchor guidance and convex guarantee are devised to facilitate the modeling of open-set noise distribution and enhance the discriminative feature learning among closed-set and open-set classes. The estimated SimT is further utilized to correct noise issues in pseudo labels and promote the generalization ability of segmentation model on target domain data. Extensive experimental results demonstrate that the proposed SimT can be flexibly plugged into existing DA methods to boost the performance. The source code is available at https://github.com/CityU-AIM-Group/SimT.
AbstractList This paper studies a practical domain adaptive (DA) semantic segmentation problem where only pseudo-labeled target data is accessible through a black-box model. Due to the domain gap and label shift between two domains, pseudo-labeled target data contains mixed closed-set and open-set label noises. In this paper, we propose a simplex noise transition matrix (SimT) to model the mixed noise distributions in DA semantic segmentation and formulate the problem as estimation of SimT. By exploiting computational geometry analysis and properties of segmentation, we design three complementary regularizers, i.e. volume regularization, anchor guidance, convex guarantee, to approximate the true SimT. Specifically, volume regularization minimizes the volume of simplex formed by rows of the non-square SimT, which ensures outputs of segmentation model to fit into the ground truth label distribution. To compensate for the lack of open-set knowledge, anchor guidance and convex guarantee are devised to facilitate the modeling of open-set noise distribution and enhance the discriminative feature learning among closed-set and open-set classes. The estimated SimT is further utilized to correct noise issues in pseudo labels and promote the generalization ability of segmentation model on target domain data. Extensive experimental results demonstrate that the proposed SimT can be flexibly plugged into existing DA methods to boost the performance. The source code is available at https://github.com/CityU-AIM-Group/SimT.
Author Liu, Jie
Liu, Tongliang
Yuan, Yixuan
Guo, Xiaoqing
Author_xml – sequence: 1
  givenname: Xiaoqing
  surname: Guo
  fullname: Guo, Xiaoqing
  email: xqguo.ee@my.cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 2
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: jliu.ee@my.cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 3
  givenname: Tongliang
  surname: Liu
  fullname: Liu, Tongliang
  email: tongliang.liu@sydney.edu.au
  organization: University of Sydney
– sequence: 4
  givenname: Yixuan
  surname: Yuan
  fullname: Yuan, Yixuan
  email: yxyuan.ee@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNotjNFKwzAUQKMouM19gT7kB1pvkiZNfBtzbsJw4qavI21uRmRNSxsE_96CPp0DB86UXMU2IiH3DHLGwDwsP9_eJVda5xw4zwGUgQsyZUrJQplCiUsyYaBEpgwzN2Q-DF8AIDhjyugJWe9Dc3ikGxvdOcQT3XUYswETfW3DgNS3PX1qGxsiXTjbpfCNdI-NjSnUo5wajMmm0MZbcu3tecD5P2fk43l1WG6y7W79slxss8BBpKwqKuO8tqjBSwtOYAVM1ugKL6SQvBQcZVWNxThdKK5KIUFry72rdQ1azMjd3zcg4rHrQ2P7n6PRpVFj_QV6rk4g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.00690
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 7031
ExternalDocumentID 9879608
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-b4b9df8ae80f5a0d3eb015ced4f35352732e5bba0d9d84626735088a2fdc8c083
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867754207029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:15:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b4b9df8ae80f5a0d3eb015ced4f35352732e5bba0d9d84626735088a2fdc8c083
PageCount 10
ParticipantIDs ieee_primary_9879608
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.405384
Snippet This paper studies a practical domain adaptive (DA) semantic segmentation problem where only pseudo-labeled target data is accessible through a black-box...
SourceID ieee
SourceType Publisher
StartPage 7022
SubjectTerms Adaptation models
Computational geometry
Computational modeling
Estimation
grouping and shape analysis
Representation learning
Semantics
Solid modeling
Transfer/low-shot/long-tail learning; Deep learning architectures and techniques; Scene analysis and understanding; Segmentation
Title SimT: Handling Open-set Noise for Domain Adaptive Semantic Segmentation
URI https://ieeexplore.ieee.org/document/9879608
WOSCitedRecordID wos000867754207029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCbb4sHT1M34Oxw8isNCW_BmpnOnZXHT7Lbw49X00HZZO_9-oW22ixdvBAgkj8D7gPd9D6F74FJQZiWJrFXEa-cQEWhBdEi1TBRXlDXJJuLZTKxWct5BD3suDADUwWfw6Iv1X74tzM4_lY3c_dgBbtFF3TiOG67W_j2FuZtMJEXLjnuicjT-mn94MRMfwBV4Wc6oPngPOVRqFzLp_2_yEzQ8cPHwfO9lTlEH8jPUb8EjbrdmOUDvizRbPuOpV01wHbGPFCElVHhWpCVgh03xa5GpNMcvVm38IYcXkDm7psYVvrOWg5QP0efkbTmekjZLAkkDyiqiuZY2EQoETUJFLQPtXLwByxPmtVtiFkCotWuR1oGNIIqZB2UqSKwRxiGwc9TLixwuEOYq5NYKCuBAoWbSDex8F08Sh7IMF-YSDbxd1ptGCGPdmuTq7-prdOwN38RV3aBetd3BLToyP1Vabu_q1fsFZ_KbHQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCZzmuhp6mb8LQeP4rpCO_BmpnPG2Sxumt0WKK-mh7bL2vn3C22zXbx4I0AgeQTeB7zvewjdAhPcoVoQX2tJrHYO4a7iRHmOEpFk0qFVsol-EPD5XEwa6G7DhQGAMvgM7m2x_MvXWbi2T2Vdcz82gJvvoF2PMbdXsbU2LyrU3GV8wWt-XM8R3cHX5MPKmdgQLtcKc_rl0bvNolI6kWHrf9Mfos6WjYcnGz9zhBqQHqNWDR9xvTnzNnqZxsnsAY-sboLpiG2sCMmhwEEW54ANOsVPWSLjFD9qubTHHJ5CYiwbh6bwndQspLSDPofPs8GI1HkSSOw6tCCKKaEjLoE7kScdTUEZJx-CZhG16i196oKnlGkR2sAN1-9TC8ukG-mQhwaDnaBmmqVwijCTHtOaOwAGFioqzMDGe7EoMjgrZDw8Q21rl8WyksJY1CY5_7v6Bu2PZu_jxfg1eLtAB3YRqiirS9QsVmu4QnvhTxHnq-tyJX8BqcieZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=SimT%3A+Handling+Open-set+Noise+for+Domain+Adaptive+Semantic+Segmentation&rft.au=Guo%2C+Xiaoqing&rft.au=Liu%2C+Jie&rft.au=Liu%2C+Tongliang&rft.au=Yuan%2C+Yixuan&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7022&rft.epage=7031&rft_id=info:doi/10.1109%2FCVPR52688.2022.00690&rft.externalDocID=9879608