Lower Bounds for Maximal Matchings and Maximal Independent Sets
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in O(Δ + log^* n) communication rounds; here n is the number of nodes and Δ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on n is optimal: these problems cannot...
Saved in:
| Published in: | Proceedings / annual Symposium on Foundations of Computer Science pp. 481 - 497 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2019
|
| Subjects: | |
| ISSN: | 2575-8454 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | There are distributed graph algorithms for finding maximal matchings and maximal independent sets in O(Δ + log^* n) communication rounds; here n is the number of nodes and Δ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on n is optimal: these problems cannot be solved in o(log^* n) rounds even if Δ = 2. However, the dependency on Δ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that maximal matchings and maximal independent sets cannot be found in o(Δ + log log n / log log log n) rounds with any randomized algorithm in the LOCAL model of distributed computing. As a corollary, it follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in o(Δ + log n / log log n) rounds; this is an improvement over prior lower bounds also as a function of n. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS.2019.00037 |