Lower Bounds for Maximal Matchings and Maximal Independent Sets

There are distributed graph algorithms for finding maximal matchings and maximal independent sets in O(Δ + log^* n) communication rounds; here n is the number of nodes and Δ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on n is optimal: these problems cannot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / annual Symposium on Foundations of Computer Science s. 481 - 497
Hlavní autoři: Balliu, Alkida, Brandt, Sebastian, Hirvonen, Juho, Olivetti, Dennis, Rabie, Mikael, Suomela, Jukka
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2019
Témata:
ISSN:2575-8454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:There are distributed graph algorithms for finding maximal matchings and maximal independent sets in O(Δ + log^* n) communication rounds; here n is the number of nodes and Δ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on n is optimal: these problems cannot be solved in o(log^* n) rounds even if Δ = 2. However, the dependency on Δ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that maximal matchings and maximal independent sets cannot be found in o(Δ + log log n / log log log n) rounds with any randomized algorithm in the LOCAL model of distributed computing. As a corollary, it follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in o(Δ + log n / log log n) rounds; this is an improvement over prior lower bounds also as a function of n.
ISSN:2575-8454
DOI:10.1109/FOCS.2019.00037