Selection-based Per-Instance Heuristic Generation for Protein Structure Prediction of 2D HP Model

The present study aims at generating heuristics for Protein Structure Prediction represented in the 2D HP model. Protein Structure Prediction is about determining the 3-dimensional form of a protein from a given amino acid sequence. The resulting structure directly relates to the functionalities of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 IEEE Symposium Series on Computational Intelligence (SSCI) s. 1 - 6
Hlavní autor: Misir, Mustafa
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The present study aims at generating heuristics for Protein Structure Prediction represented in the 2D HP model. Protein Structure Prediction is about determining the 3-dimensional form of a protein from a given amino acid sequence. The resulting structure directly relates to the functionalities of the protein. There are a wide range of algorithms to address Protein Structure Prediction as an optimization problem. Being said that there is no an ultimate algorithm that can effectively solve PSP under varying experimental settings. Hyper-heuristics can offer a solution as high-level, problem-independent search and optimization strategies. Selection Hyper-heuristics operate on given heuristic sets that directly work on the solution space. One group of Selection Hyper-heuristics focus on automatically specify the best heuristics on-the-fly. Yet, the candidate heuristics tend to be decided, preferably a domain expert. Generation Hyper-heuristics approach differently as aiming to generate such heuristics automatically. This work introduces a automated heuristic generation strategy supporting Selection Hyper-heuristics. The generation task is formulated as a selection problem, disclosing the best expected heuristic specifically f or a given problem instance. The heuristic generation process is established as a parameter configuration problem. T he corresponding system is devised by initially generating a training data alongside with a set of basic features characterizing the Protein Structure Prediction problem instances. The data is generated discretizing the parameter configuration space o f a single heuristic. The resulting data is used to predict the best configuration of a specific heuristic used in a heuristic set under Selection Hyper-heuristics. The prediction is performed separately for each instance rather than using one setting for all the instances. The empirical analysis showed that the proposed idea offers both better and robust performance on 22 PSP instances compared to the one-for-all heuristic sets. Additional analysis linked to the selection method, ALORS, revealed insights on what makes the PSP instances hard / easy while providing dis/-similarity analysis between the candidate configurations.
AbstractList The present study aims at generating heuristics for Protein Structure Prediction represented in the 2D HP model. Protein Structure Prediction is about determining the 3-dimensional form of a protein from a given amino acid sequence. The resulting structure directly relates to the functionalities of the protein. There are a wide range of algorithms to address Protein Structure Prediction as an optimization problem. Being said that there is no an ultimate algorithm that can effectively solve PSP under varying experimental settings. Hyper-heuristics can offer a solution as high-level, problem-independent search and optimization strategies. Selection Hyper-heuristics operate on given heuristic sets that directly work on the solution space. One group of Selection Hyper-heuristics focus on automatically specify the best heuristics on-the-fly. Yet, the candidate heuristics tend to be decided, preferably a domain expert. Generation Hyper-heuristics approach differently as aiming to generate such heuristics automatically. This work introduces a automated heuristic generation strategy supporting Selection Hyper-heuristics. The generation task is formulated as a selection problem, disclosing the best expected heuristic specifically f or a given problem instance. The heuristic generation process is established as a parameter configuration problem. T he corresponding system is devised by initially generating a training data alongside with a set of basic features characterizing the Protein Structure Prediction problem instances. The data is generated discretizing the parameter configuration space o f a single heuristic. The resulting data is used to predict the best configuration of a specific heuristic used in a heuristic set under Selection Hyper-heuristics. The prediction is performed separately for each instance rather than using one setting for all the instances. The empirical analysis showed that the proposed idea offers both better and robust performance on 22 PSP instances compared to the one-for-all heuristic sets. Additional analysis linked to the selection method, ALORS, revealed insights on what makes the PSP instances hard / easy while providing dis/-similarity analysis between the candidate configurations.
Author Misir, Mustafa
Author_xml – sequence: 1
  givenname: Mustafa
  surname: Misir
  fullname: Misir, Mustafa
  email: mustafa.misir@istinye.edu.tr
  organization: Istinye University,Department of Computer Engineering,Istanbul,Turkey
BookMark eNotj81KxDAYRSM4Cx3nCQTJC7QmadImS6k6LYxYqLMe8vMVAjWRNF349o46q8u9HA7cW3QdYgCEHigpKSXqcRzbXhAuaMkIo6Wqa0KYuEI71UjaMEkV4VLeID3CDDb7GAqjF3B4gFT0Yck6WMAdrMkv2Vu8hwBJ_3J4igkPKWbwAY85rTavCc4LOP8nwnHC7Bl3A36LDuY7tJn0vMDuklt0fH35aLvi8L7v26dD4RmpcmGYltY4IjhRhptJicbVwk6NkRYYN8oIxlV9LpUFYDW1XHHHgFtJuBJQbdH9v9cDwOkr-U-dvk-X49UPeKdTgA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI50451.2021.9660025
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728190488
1728190487
EndPage 6
ExternalDocumentID 9660025
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-b2a8cbd05409b4bf957d65cf7b8ce24b9b524968ce3cee261c494d2e4c80495e3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824464300205&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:51 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b2a8cbd05409b4bf957d65cf7b8ce24b9b524968ce3cee261c494d2e4c80495e3
PageCount 6
ParticipantIDs ieee_primary_9660025
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8067605
Snippet The present study aims at generating heuristics for Protein Structure Prediction represented in the 2D HP model. Protein Structure Prediction is about...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 2D HP Model
Algorithm Selection
Benchmark testing
Computational modeling
Feature extraction
Heuristic Generation
Prediction algorithms
Predictive models
Protein Structure Prediction
Proteins
Search problems
Selection Hyper-heuristics
Title Selection-based Per-Instance Heuristic Generation for Protein Structure Prediction of 2D HP Model
URI https://ieeexplore.ieee.org/document/9660025
WOSCitedRecordID wos000824464300205&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwED2S0KFTW5LSbzR0rBJHlmxpThuSJRjcQragTwiUpKRJf391skkpdOlmm0O2T4Z3z9K9B_BoShmk9BnlzhjKdRDU5JmmJn5dykZCMW7NJsrFQi6XqurA07EXxnufNp_5IR6mtXy3tQf8VTZCJcmI0V3olmXR9Gq1Tb_jTI3qejIXKJcSWR8bD9vgX64pCTSmZ_-73TkMfrrvSHXElQvo-E0fdJ0Ma2IWKQKPI5Xf0Xmq7WL4zB8axWXSyEhjHInlKI6DdpakTjKxhx2OjEszKWAbCHsms4qgIdr7AN6mL6-TGW3tEeiaZfmeGqalNQ5rLmW4CUqUrhA2lEZaz7hRRkRuVcSTPD5xZEqWK-6Y51ZGWiB8fgm9zXbjr4A4VA0zTAbuBS-YM4rrIkTkd1znuWbX0Mf0rD4aBYxVm5mbvy_fwinOQNr0Ie6gF9_Q38OJ_dqvP3cPadq-AZb_myY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKeiTyiZ-mwcfzdalSZs8q6PDOQqdsLfRfBQGssnc_P3mpmUi-OJbWy5pe1M49zS55wDc61RWUrqIcqs15WUlqI6jkmr_dSnjCcWgMZtIJxM5m6m8BQ-7XhjnXNh85np4GNby7cps8VdZH5UkPUbvwb7gnEV1t1bT9juIVL8oHkcCBVM872ODXhP-yzclwMbw-H83PIHuT_8dyXfIcgott-xAWQTLGp9HitBjSe7WdBSqOx-euW2tuUxqIWmMI74gxXHQ0JIUQSh2u8aRcXEmBKwqwp5IlhO0RHvvwtvwefqY0cYggS5YFG-oZqU02mLVpTTXlRKpTYSpUi2NY1wrLTy7SvxJ7J_YcyXDFbfMcSM9MRAuPoP2crV050As6oZpJivuBE-Y1YqXSeWx3_Iyjkt2AR1Mz_yj1sCYN5m5_PvyHRxm09fxfDyavFzBEc5G2AIirqHt39bdwIH52iw-17dhCr8B1tyebQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Selection-based+Per-Instance+Heuristic+Generation+for+Protein+Structure+Prediction+of+2D+HP+Model&rft.au=Misir%2C+Mustafa&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSSCI50451.2021.9660025&rft.externalDocID=9660025