Aggregated Context Network For Semantic Segmentation Of Aerial Images

With the considerable advancement of remote sensing technology and computer vision, automatic scene understanding for very high-resolution aerial (VHR) imagery became a necessary research topic. Semantic segmentation of VHR imagery is an important task where context information plays a crucial role....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - International Conference on Image Processing S. 1526 - 1530
Hauptverfasser: Chouhan, Avinash, Sur, Arijit, Chutia, Dibyajyoti
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 16.10.2022
Schlagworte:
ISSN:2381-8549
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the considerable advancement of remote sensing technology and computer vision, automatic scene understanding for very high-resolution aerial (VHR) imagery became a necessary research topic. Semantic segmentation of VHR imagery is an important task where context information plays a crucial role. Adequate feature delineation is difficult due to high-class imbalance in remotely sensed data. In this work, we proposed a variant of encoder-decoder-based architecture where residual attentive skip connections are incorporated. We added a multi-context block in each of the encoder units to capture multi-scale and multi-context features and used dense connections for effective feature extraction. A comprehensive set of experiments reveal that the proposed scheme outperformed recently published work by 3% in overall accuracy and F1 score for ISPRS Vaihingen and ISPRS Potsdam benchmark datasets.
AbstractList With the considerable advancement of remote sensing technology and computer vision, automatic scene understanding for very high-resolution aerial (VHR) imagery became a necessary research topic. Semantic segmentation of VHR imagery is an important task where context information plays a crucial role. Adequate feature delineation is difficult due to high-class imbalance in remotely sensed data. In this work, we proposed a variant of encoder-decoder-based architecture where residual attentive skip connections are incorporated. We added a multi-context block in each of the encoder units to capture multi-scale and multi-context features and used dense connections for effective feature extraction. A comprehensive set of experiments reveal that the proposed scheme outperformed recently published work by 3% in overall accuracy and F1 score for ISPRS Vaihingen and ISPRS Potsdam benchmark datasets.
Author Chutia, Dibyajyoti
Chouhan, Avinash
Sur, Arijit
Author_xml – sequence: 1
  givenname: Avinash
  surname: Chouhan
  fullname: Chouhan, Avinash
  organization: North Eastern Space Applications Centre,Umiam,Meghalaya,India,793103
– sequence: 2
  givenname: Arijit
  surname: Sur
  fullname: Sur, Arijit
  organization: Indian Institute of Technology,Guwahati,Assam,India,781039
– sequence: 3
  givenname: Dibyajyoti
  surname: Chutia
  fullname: Chutia, Dibyajyoti
  organization: North Eastern Space Applications Centre,Umiam,Meghalaya,India,793103
BookMark eNotj9FKwzAYRqMouE6fQJC8QOufpE2Ty1G2WRhOUK9Hkv4p0bWVNKC-vQN39Z1zc-DLyNU4jUjIA4OCMdCPbdO-lLKqZcGB80IrrYDJC5IxKatSSw71JVlwoViuTn5Dsnn-AODABFuQ9arvI_YmYUebaUz4k-gzpu8pftLNFOkrDmZMwZ2gH3BMJoVppHtPVxiDOdJ2MD3Ot-Tam-OMd-ddkvfN-q15ynf7bdusdnngIFJuvOm8s1qVyrjKaonaee2k78CBBWmEAKO5lQqVrz1YFLqsO22xVqzSXizJ_X83IOLhK4bBxN_D-bL4Aw0dTkA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP46576.2022.9898016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665496207
9781665496209
EISSN 2381-8549
EndPage 1530
ExternalDocumentID 9898016
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-afadfcb9848ac5b96e9cf9c6fd0c0b06a330a92b68e8f7f0be3947d9be78159f3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058109501123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:19:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-afadfcb9848ac5b96e9cf9c6fd0c0b06a330a92b68e8f7f0be3947d9be78159f3
PageCount 5
ParticipantIDs ieee_primary_9898016
PublicationCentury 2000
PublicationDate 2022-Oct.-16
PublicationDateYYYYMMDD 2022-10-16
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.219387
Snippet With the considerable advancement of remote sensing technology and computer vision, automatic scene understanding for very high-resolution aerial (VHR) imagery...
SourceID ieee
SourceType Publisher
StartPage 1526
SubjectTerms Benchmark testing
Computer architecture
Computer vision
Convolution
Feature extraction
multi-context block
residual attentive connection
Semantic segmentation
Semantics
Task analysis
Title Aggregated Context Network For Semantic Segmentation Of Aerial Images
URI https://ieeexplore.ieee.org/document/9898016
WOSCitedRecordID wos001058109501123&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UeujJtlr6Joceu5p95XEUUSoUK_SBN9kkE_GgFl1Lf36TuFgKvfQ2BEJgksx8M8k3A3DPc4YOiORRlvlsFcosknmuoiIxaWw51UmoU_D-xMdjMZ3KSQ0eDlwYRAyfz7DjxfCWb9Z651NlXd_r0EGUOtQ5Z3uu1iG48nVjKgZwTGV31B9NMubAtAsBk6RTzfzVQiV4kGHzf2ufQPuHikcmBydzCjVcnUGzwo6kupnbFgx6cxc5-5yYIaHi1FdJxvsv3mS43pAXXDodLrQT5suKb7Qiz5b0whEko6UzLNs2vA0Hr_3HqGqREC0SmpZRYQtjtZIiE4XOlWQotZWaWUM1VZQVaUoLmSgmUFhuqcJUZtxIhVw4IGPTc2is1iu8AKI5NSGCEFplNqdFrEyCuaapMVpScQktr5XZx74KxqxSyNXfw9dw7BXvrXzMbqBRbnZ4C0f6s1xsN3dh674B2deafw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QTfSEisa3PXh0odttd9sjIRA24koiGm5k-yIcWAwsxp9vWzYYEy_emiZNk5l25ptpvxkAHhIaawtEaECIy1ZpTgJOqQhyrKLQJEhiX6fgfZhkGZtM-KgGHndcGK21_3ymW27o3_LVUm5cqqzteh1aiLIH9ikhGG3ZWrvwylWOqTjAIeLttJuOSGzhtA0CMW5Va381UfE-pN_43-7H4OyHjAdHOzdzAmq6OAWNCj3C6m6um6DXmdnY2WXFFPQ1p75KmG0_ecP-cgVf9cJKcS7tYLaoGEcFfDGw4w8hTBfWtKzPwFu_N-4OgqpJQjDHKCqD3OTKSMEZYbmkgseaS8NlbBSSSKA4jyKUcyxipplJDBI64iRRXOiEWShjonNQL5aFvgBQJkj5GIJJQQxFeSgU1lSiSCnJEbsETSeV6ce2Dsa0EsjV39P34HAwfh5Oh2n2dA2OnBKczQ_jG1AvVxt9Cw7kZzlfr-68Gr8BEcWdxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Aggregated+Context+Network+For+Semantic+Segmentation+Of+Aerial+Images&rft.au=Chouhan%2C+Avinash&rft.au=Sur%2C+Arijit&rft.au=Chutia%2C+Dibyajyoti&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1526&rft.epage=1530&rft_id=info:doi/10.1109%2FICIP46576.2022.9898016&rft.externalDocID=9898016