Adaptive Asynchronous Clustering Algorithms for Wireless Mesh Networks

It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two centralised methods for agents in wire...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 35; číslo 3; s. 2610 - 2627
Hlavní autoři: Qiao, Cheng, Brown, Kenneth N., Zhang, Fan, Tian, Zhihong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two centralised methods for agents in wireless network to learn the global models, while the privacy is protected. Moreover, the communication cost and clustering quality can be adaptively balanced. The proposed clustering algorithms do not require the number of clusters to be pre-defined, and we propose a bounding boxes based method to fully utilize the shape information of clusters to improve the accuracy of the global model. Furthermore, we consider different knowledge levels of agents and different requirements about the global model. In experiments on randomly generated network topologies, we demonstrate that methods which do all the iterations of clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve higher accuracy, in significantly shorter elapsed time.
AbstractList It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two centralised methods for agents in wireless network to learn the global models, while the privacy is protected. Moreover, the communication cost and clustering quality can be adaptively balanced. The proposed clustering algorithms do not require the number of clusters to be pre-defined, and we propose a bounding boxes based method to fully utilize the shape information of clusters to improve the accuracy of the global model. Furthermore, we consider different knowledge levels of agents and different requirements about the global model. In experiments on randomly generated network topologies, we demonstrate that methods which do all the iterations of clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve higher accuracy, in significantly shorter elapsed time.
Author Qiao, Cheng
Brown, Kenneth N.
Zhang, Fan
Tian, Zhihong
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0003-2887-5549
  surname: Qiao
  fullname: Qiao, Cheng
  email: qiao.cheng@insight-centre.org
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
– sequence: 2
  givenname: Kenneth N.
  surname: Brown
  fullname: Brown, Kenneth N.
  email: k.brown@cs.ucc.ie
  organization: Department of Computer Science, Insight Centre for Data Analytics, University College Cork, Cork, Ireland
– sequence: 3
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  email: zhangf@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
– sequence: 4
  givenname: Zhihong
  orcidid: 0000-0002-9409-5359
  surname: Tian
  fullname: Tian, Zhihong
  email: tianzhihong@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
BookMark eNotzc9PwjAcBfDGYCKgf4DxssTzsN_-XI8LghpRLxiPS9d2MBwrtpuE_14Int47fPLeCA1a3zqEbgFPALB6WL4-ziYEE5hQAMU5vkBD4DxLCSgYHDtmkDLK5BUaxbjBGGcygyGa51bvuvrXJXk8tGYdfOv7mEybPnYu1O0qyZuVD3W33sak8iH5qoNrXIzJm4vr5N11ex--4zW6rHQT3c1_jtHnfLacPqeLj6eXab5Ia4Jpl2pTWYuFLAUDobU14CpubCmFI2BKzYWUpKwICCuw4idGaWaNYaCElYSO0f15dxf8T-9iV2x8H9rjZUGkpIwzzE7q7qxq51yxC_VWh0Oh-BEQRf8A8wRZSg
CODEN ITKEEH
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2021.3119550
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 2627
ExternalDocumentID 9573429
Genre orig-research
GrantInformation_xml – fundername: Guangdong Province Key Area R&D Program of China
  grantid: 2019B010137004
– fundername: National Natural Science Foundation of China
  grantid: U20B2046
  funderid: 10.13039/501100001809
– fundername: Science Foundation Ireland
  grantid: SFI/12/RC/2289-P2; 16/SP/3804
  funderid: 10.13039/501100001602
– fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
  grantid: 2019
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i203t-acfdd067b6416aadc1ef5cdb76e21cba56772bf216d6095b641338dcc4196d723
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967052000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 03:14:08 EDT 2025
Wed Aug 27 02:48:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-acfdd067b6416aadc1ef5cdb76e21cba56772bf216d6095b641338dcc4196d723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2887-5549
0000-0002-9409-5359
PQID 2773454042
PQPubID 85438
PageCount 18
ParticipantIDs proquest_journals_2773454042
ieee_primary_9573429
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0008781
Score 2.5273619
Snippet It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2610
SubjectTerms Accuracy
Adaptive algorithms
Algorithms
asynchronous
Centroids
Clustering
clustering algorithm
Clustering algorithms
Computational modeling
Computer networks
Context modeling
Costs
Data models
Distributed algorithm
Finite element method
Machine learning
Network topologies
Privacy
Temperature sensors
wireless mesh network
Wireless networks
Title Adaptive Asynchronous Clustering Algorithms for Wireless Mesh Networks
URI https://ieeexplore.ieee.org/document/9573429
https://www.proquest.com/docview/2773454042
Volume 35
WOSCitedRecordID wos000967052000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6K0yk5eLSuP5PmWOaGoA4PU3YrbZK6wezG2gn-976kdQh68VZIAuWFfH1f8973AVzzVIY0VNLiQkhLo6TFU4asVSYek9LOmFH7fH1kk0k4m_HnBtzsemGUUqb4TN3qR3OXL1diq3-VDXjAPMTPJjQZY1Wv1g51Q2YMSZFdICfyfFbfYDo2H0wf7kbIBF0HCarDA91ib5xUfsGv-aaM2_97myM4rHNHElWbfQwNlXeg_e3LQOpj2oGDHyKDXRhHMllrUCNR8ZkLLYaLbJ8Ml1utkYBTSLR8W20W5fy9IJjCEl0Qu0QAJE-qmJNJVSdenMDLeDQd3lu1e4K1cG2vtBKRYawpSynmXEkihaOyQMiUUeU6Ik0Ciol1mrkOlVp0Tk9DuiqF8PFQSuZ6p9DKV7k6A5JR5TGf2tIOMj_lOE6lCjCzEcb3Svagq8MTryuBjLiOTA_63_GN65NRxC7DMUwTfff871UXsK8t3as6rz60ys1WXcKe-CgXxebKbPoXe2OsSQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmqgHUdCIou7Bo5V-7rbHBiEYPuIBDbem3d0KCRZCi4n_3tm2EBO9eGuy26SZ7r6-152ZB3DvRcKlrhSax7nQFEpqXsRQtYrQYkLoMcu7fb4N2XjsTqfeSwUedrUwUso8-Uw-qsv8LF8s-Ub9Kmt7DrMQP_dg37Ft0yiqtXa467LckhT1Baoiy2blGaahe-3J4KmLWtA0UKIanqOK7HMvlV8AnH9VerX_Pc8pnJTskfjF6z6DikzqUNs6M5Byo9bh-EebwQb0fBGuFKwRP_1KuGqHi3qfdBYb1SUBpxB_8b5cz7PZR0qQxBKVErtACCQjmc7IuMgUT8_htdeddPpa6Z-gzU3dyrSQxxhtyiKKrCsMBTdk7HARMSpNg0ehQ5FaR7FpUKHazqlpKFgF5zZuS8FM6wKqyTKRl0BiKi1mU13oTmxHHo5TIR3kNjx3vhJNaKjwBKuiRUZQRqYJrW18g3JvpIHJcAyJom1e_X3XHRz2J6NhMHweD67hSBm8F1lfLahm6428gQP-mc3T9W2-AL4BoCuvkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Asynchronous+Clustering+Algorithms+for+Wireless+Mesh+Networks&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Cheng%2C+Qiao&rft.au=Brown%2C+Kenneth+N&rft.au=Zhang%2C+Fan&rft.au=Tian%2C+Zhihong&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=3&rft.spage=2610&rft_id=info:doi/10.1109%2FTKDE.2021.3119550&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon