Adaptive Asynchronous Clustering Algorithms for Wireless Mesh Networks
It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two centralised methods for agents in wire...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 35; číslo 3; s. 2610 - 2627 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two centralised methods for agents in wireless network to learn the global models, while the privacy is protected. Moreover, the communication cost and clustering quality can be adaptively balanced. The proposed clustering algorithms do not require the number of clusters to be pre-defined, and we propose a bounding boxes based method to fully utilize the shape information of clusters to improve the accuracy of the global model. Furthermore, we consider different knowledge levels of agents and different requirements about the global model. In experiments on randomly generated network topologies, we demonstrate that methods which do all the iterations of clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve higher accuracy, in significantly shorter elapsed time. |
|---|---|
| AbstractList | It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two centralised methods for agents in wireless network to learn the global models, while the privacy is protected. Moreover, the communication cost and clustering quality can be adaptively balanced. The proposed clustering algorithms do not require the number of clusters to be pre-defined, and we propose a bounding boxes based method to fully utilize the shape information of clusters to improve the accuracy of the global model. Furthermore, we consider different knowledge levels of agents and different requirements about the global model. In experiments on randomly generated network topologies, we demonstrate that methods which do all the iterations of clustering in each cycle, and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve higher accuracy, in significantly shorter elapsed time. |
| Author | Qiao, Cheng Brown, Kenneth N. Zhang, Fan Tian, Zhihong |
| Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0003-2887-5549 surname: Qiao fullname: Qiao, Cheng email: qiao.cheng@insight-centre.org organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China – sequence: 2 givenname: Kenneth N. surname: Brown fullname: Brown, Kenneth N. email: k.brown@cs.ucc.ie organization: Department of Computer Science, Insight Centre for Data Analytics, University College Cork, Cork, Ireland – sequence: 3 givenname: Fan surname: Zhang fullname: Zhang, Fan email: zhangf@gzhu.edu.cn organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China – sequence: 4 givenname: Zhihong orcidid: 0000-0002-9409-5359 surname: Tian fullname: Tian, Zhihong email: tianzhihong@gzhu.edu.cn organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China |
| BookMark | eNotzc9PwjAcBfDGYCKgf4DxssTzsN_-XI8LghpRLxiPS9d2MBwrtpuE_14Int47fPLeCA1a3zqEbgFPALB6WL4-ziYEE5hQAMU5vkBD4DxLCSgYHDtmkDLK5BUaxbjBGGcygyGa51bvuvrXJXk8tGYdfOv7mEybPnYu1O0qyZuVD3W33sak8iH5qoNrXIzJm4vr5N11ex--4zW6rHQT3c1_jtHnfLacPqeLj6eXab5Ia4Jpl2pTWYuFLAUDobU14CpubCmFI2BKzYWUpKwICCuw4idGaWaNYaCElYSO0f15dxf8T-9iV2x8H9rjZUGkpIwzzE7q7qxq51yxC_VWh0Oh-BEQRf8A8wRZSg |
| CODEN | ITKEEH |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2021.3119550 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 2627 |
| ExternalDocumentID | 9573429 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Province Key Area R&D Program of China grantid: 2019B010137004 – fundername: National Natural Science Foundation of China grantid: U20B2046 funderid: 10.13039/501100001809 – fundername: Science Foundation Ireland grantid: SFI/12/RC/2289-P2; 16/SP/3804 funderid: 10.13039/501100001602 – fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme grantid: 2019 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i203t-acfdd067b6416aadc1ef5cdb76e21cba56772bf216d6095b641338dcc4196d723 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967052000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Mon Jun 30 03:14:08 EDT 2025 Wed Aug 27 02:48:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-acfdd067b6416aadc1ef5cdb76e21cba56772bf216d6095b641338dcc4196d723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2887-5549 0000-0002-9409-5359 |
| PQID | 2773454042 |
| PQPubID | 85438 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2773454042 ieee_primary_9573429 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| SSID | ssj0008781 |
| Score | 2.5273619 |
| Snippet | It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data privacy and high cost in... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 2610 |
| SubjectTerms | Accuracy Adaptive algorithms Algorithms asynchronous Centroids Clustering clustering algorithm Clustering algorithms Computational modeling Computer networks Context modeling Costs Data models Distributed algorithm Finite element method Machine learning Network topologies Privacy Temperature sensors wireless mesh network Wireless networks |
| Title | Adaptive Asynchronous Clustering Algorithms for Wireless Mesh Networks |
| URI | https://ieeexplore.ieee.org/document/9573429 https://www.proquest.com/docview/2773454042 |
| Volume | 35 |
| WOSCitedRecordID | wos000967052000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4kEPVlvF-sUePBrb3c1mk2OoLYJYPFToLSS7G1uoaWlSwX_vbJIWQS_eAtmFMMvMvJedmQdwl2rKMZEiUzW-cNxECycRsesoqag0WsqBSkqxCTmZ-LNZ8NqA-30vjDGmLD4zD_axvMvXK7W1v8r6gZAc42cTmlLKqldrH3V9WQqSIrtATsRdWd9g0kHQnz4_jpAJMooElQbCttiXSiq_wm-ZU8bt_33NCRzX2JGE1WGfQsNkHWjvdBlI7aYdOPoxZLAL41DHaxvUSJh_ZcoOw0W2T4bLrZ2RgEtIuHxfbRbF_CMnCGGJLYhdYgAkLyafk0lVJ56fwdt4NB0-ObV6grNgA144sUq1xlyUeIi54lgralKhdCI9w6hKYuEhsE5SRj1th87ZZUhXtVIuOqWWjJ9DK1tl5gKIEjGisDQNcLfra-77IvV8oYxyDWdG96BrzROtqwEZUW2ZHlzv7BvVnpFHTOI7hIkuu_x71xUcWkn3qs7rGlrFZmtu4EB9Fot8c1se-jfM7a0u |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20CurBqlWsVt2DR6PdzW42ORZtqfQDDxW8hWR3Ywu1LU0q-O-dTdIi6MVbILsQJpmZ97Iz8wBuE01dTKTIVI0vHB5r4cQi4o6SikqjpWyqOBebkMOh__YWvGzB3aYXxhiTF5-Ze3uZn-XruVrZX2UPgZAuxs9t2BGcM1p0a23iri9zSVLkF8iKXC7LM0zaDB5Gvac2ckFGkaLSQNgm-1xL5VcAzrNKp_q_5zmCwxI9klbxuo9hy8xOoLpWZiClo57AwY8xgzXotHS0sGGNtNKvmbLjcJHvk8fpyk5JwCWkNX2fLyfZ-CMlCGKJLYmdYggkA5OOybCoFE9P4bXTHj12nVI_wZmwpps5kUq0xmwUe4i6okgrahKhdCw9w6iKI-EhtI4TRj1tx87ZZUhYtVIc3VJL5p5BZTafmXMgSkSIw5IkwN3c167vi8TzhTKKG5cZXYeaNU-4KEZkhKVl6tBY2zcsfSMNmcR7CBQ5u_h71w3sdUeDfth_HvYuYd8KvBdVXw2oZMuVuYJd9ZlN0uV1_gF8A_xbsHU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Asynchronous+Clustering+Algorithms+for+Wireless+Mesh+Networks&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Cheng%2C+Qiao&rft.au=Brown%2C+Kenneth+N&rft.au=Zhang%2C+Fan&rft.au=Tian%2C+Zhihong&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=3&rft.spage=2610&rft_id=info:doi/10.1109%2FTKDE.2021.3119550&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |