An online convex optimization algorithm for controlling linear systems with state and input constraints
This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to poly...
Uloženo v:
| Vydáno v: | Proceedings of the American Control Conference s. 2523 - 2528 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
American Automatic Control Council
25.05.2021
|
| Témata: | |
| ISSN: | 2378-5861 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper studies the problem of controlling linear dynamical systems subject to point-wise-in-time constraints. We present an algorithm similar to online gradient descent, that can handle time-varying and a priori unknown convex cost functions while restraining the system states and inputs to polytopic constraint sets. Analysis of the algorithm's performance, measured by dynamic regret, reveals that sub-linear regret is achieved if the variation of the cost functions is sublinear in time. Finally, we present an example to illustrate implementation details as well as the algorithm's performance and show that the proposed algorithm ensures constraint satisfaction. |
|---|---|
| ISSN: | 2378-5861 |
| DOI: | 10.23919/ACC50511.2021.9482877 |