Medial Spectral Coordinates for 3D Shape Analysis

In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects repre-sented by surface meshes, their voxelized interiors, or surface point clouds. In part, this interest has been stimulated by the increased availability of RGBD cameras, and by applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 2676 - 2686
Hauptverfasser: Rezanejad, Morteza, Khodadad, Mohammad, Mahyar, Hamidreza, Lombaert, Herve, Gruninger, Michael, Walther, Dirk, Siddiqi, Kaleem
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2022
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects repre-sented by surface meshes, their voxelized interiors, or surface point clouds. In part, this interest has been stimulated by the increased availability of RGBD cameras, and by applications of computer vision to autonomous driving, medical imaging, and robotics. In these settings, spectral co-ordinates have shown promise for shape representation due to their ability to incorporate both local and global shape properties in a manner that is qualitatively invariant to iso-metric transformations. Yet, surprisingly, such coordinates have thus far typically considered only local surface positional or derivative information. In the present article, we propose to equip spectral coordinates with medial (object width) information, so as to enrich them. The key idea is to couple surface points that share a medial ball, via the weights of the adjacency matrix. We develop a spectral feature using this idea, and the algorithms to compute it. The incorporation of object width and medial coupling has direct benefits, as illustrated by our experiments on object classification, object part segmentation, and surface point correspondence.
AbstractList In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects repre-sented by surface meshes, their voxelized interiors, or surface point clouds. In part, this interest has been stimulated by the increased availability of RGBD cameras, and by applications of computer vision to autonomous driving, medical imaging, and robotics. In these settings, spectral co-ordinates have shown promise for shape representation due to their ability to incorporate both local and global shape properties in a manner that is qualitatively invariant to iso-metric transformations. Yet, surprisingly, such coordinates have thus far typically considered only local surface positional or derivative information. In the present article, we propose to equip spectral coordinates with medial (object width) information, so as to enrich them. The key idea is to couple surface points that share a medial ball, via the weights of the adjacency matrix. We develop a spectral feature using this idea, and the algorithms to compute it. The incorporation of object width and medial coupling has direct benefits, as illustrated by our experiments on object classification, object part segmentation, and surface point correspondence.
Author Rezanejad, Morteza
Mahyar, Hamidreza
Khodadad, Mohammad
Walther, Dirk
Gruninger, Michael
Lombaert, Herve
Siddiqi, Kaleem
Author_xml – sequence: 1
  givenname: Morteza
  surname: Rezanejad
  fullname: Rezanejad, Morteza
  organization: University of Toronto,Toronto,Canada
– sequence: 2
  givenname: Mohammad
  surname: Khodadad
  fullname: Khodadad, Mohammad
  organization: Sharif University of Technology,Tehran,Iran
– sequence: 3
  givenname: Hamidreza
  surname: Mahyar
  fullname: Mahyar, Hamidreza
  organization: McMaster University,Hamilton,Canada
– sequence: 4
  givenname: Herve
  surname: Lombaert
  fullname: Lombaert, Herve
  organization: ETS Montréal,Canada
– sequence: 5
  givenname: Michael
  surname: Gruninger
  fullname: Gruninger, Michael
  organization: University of Toronto,Toronto,Canada
– sequence: 6
  givenname: Dirk
  surname: Walther
  fullname: Walther, Dirk
  organization: University of Toronto,Toronto,Canada
– sequence: 7
  givenname: Kaleem
  surname: Siddiqi
  fullname: Siddiqi, Kaleem
  organization: McGill University,Montréal,Canada
BookMark eNotzEFOwzAQQFGDQKItPQEscoGEsSce28sqUEAqAlFgWznxWASFJIqz6e1BgtV_q78UZ_3QsxDXEgopwd1UHy-vWpG1hQKlCgBl5IlYSiJdkisJT8VCAmFOTroLsU7pCwBQSUnOLoR84tD6LtuP3MzTL6phmELb-5lTFocpw9ts_-lHzja9746pTZfiPPou8fq_K_G-vXurHvLd8_1jtdnlrQKcc18bj9oEGxGbiJq4bJT30WtCh1xjaRVzxGAaQhmUidrE2hgIEFiqGlfi6u_bMvNhnNpvPx0PzhpLpcUfEv1GTw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.00271
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 2686
ExternalDocumentID 9878648
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-ab7a357d8f33cf356e4c2aafa56393eb3482eef3d7c631d27f57fb770d0de12b3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867754202092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:15:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-ab7a357d8f33cf356e4c2aafa56393eb3482eef3d7c631d27f57fb770d0de12b3
PageCount 11
ParticipantIDs ieee_primary_9878648
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.245055
Snippet In recent years there has been a resurgence of interest in our community in the shape analysis of 3D objects repre-sented by surface meshes, their voxelized...
SourceID ieee
SourceType Publisher
StartPage 2676
SubjectTerms categorization
Computational modeling
Computer vision
Deep learning
grouping and shape analysis; Recognition: detection
Point cloud compression
retrieval; Representation learning
Segmentation
Shape
Solid modeling
Three-dimensional displays
Title Medial Spectral Coordinates for 3D Shape Analysis
URI https://ieeexplore.ieee.org/document/9878648
WOSCitedRecordID wos000867754202092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRZBecgDI6GJL4mduVAxQFXxqLpVfpxFl7Tqg9-PnYZ2YWGzvFg-27r7zvd9B3DnKNOOWw9L0HmA4m9FpBJXRNZiiloWJq6ItJMXMRrJ6bQYN-B-z4Uhoqr4jB7CsPrLtwuzDamyvsfHMk9lE5pC5Duu1j6fgh7J5IWs2XFJXPQHk_FbEDMJBVw8yHLyiid_6KFSuZBh-3-Ln0D3wMVj472XOYUGlWfQroNHVj_NdQeS14oDwkJD-ZC9YIOFx5XzMsSSzEemDB_Z-5daEvvVIenC5_DpY_Ac1f0QojmPcRMpLRRmwkqHaBxmOaWGK-VU5sMM9Kg4lZzIoRUmx8Ry4TLhtBCxjS0lXOM5tMpFSRfAUqkVaS0zE-Tv40LlmAtDNnbh70XIS-gEC8yWO8mLWb353t_TV3AcTLyroLqG1ma1pRs4Mt-b-Xp1W53TDw8Kk0E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_Doym67u-2eUYIRCFEk3Egf08BlITz8_bbLChcv3ppemk7bzHzT-b4BeLSYKEuNgyXMOoDibkUgI5sFxrCYKZHpsCDSjrq83xfjcTaowNOOC4OIRfEZPvth8Zdv5nrjU2VNh49FGosDOPSds0q21i6jwhyWSTNR8uOiMGu2RoMPL2fiS7ioF-akBVN-30WlcCLt2v-WP4XGno1HBjs_cwYVzM-hVoaPpHycqzpEvYIFQnxLeZ-_IK25Q5az3EeTxMWmhL2Qz6lcIPlVImnAV_t12OoEZUeEYEZDtg6k4pIl3AjLmLYsSTHWVEorExdoMIeLY0ERLTNcpywylNuEW8V5aEKDEVXsAqr5PMdLILFQEpUSifYC-GEmU5ZyjSa0_veFiyuoewtMFlvRi0m5-eu_px_guDPsdSfdt_77DZx4c2_rqW6hul5u8A6O9Pd6tlreF2f2A-5Uloo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Medial+Spectral+Coordinates+for+3D+Shape+Analysis&rft.au=Rezanejad%2C+Morteza&rft.au=Khodadad%2C+Mohammad&rft.au=Mahyar%2C+Hamidreza&rft.au=Lombaert%2C+Herve&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2676&rft.epage=2686&rft_id=info:doi/10.1109%2FCVPR52688.2022.00271&rft.externalDocID=9878648