DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge Devices

As the number of edge devices with computing resources (e.g., embedded GPUs, mobile phones, and laptops) in-creases, recent studies demonstrate that it can be beneficial to col-laboratively run convolutional neural network (CNN) inference on more than one edge device. However, these studies make str...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 1097 - 1107
Hlavní autori: Hou, Xueyu, Guan, Yongjie, Han, Tao, Zhang, Ning
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2022
Predmet:
ISSN:1530-2075
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:As the number of edge devices with computing resources (e.g., embedded GPUs, mobile phones, and laptops) in-creases, recent studies demonstrate that it can be beneficial to col-laboratively run convolutional neural network (CNN) inference on more than one edge device. However, these studies make strong assumptions on the devices' conditions, and their application is far from practical. In this work, we propose a general method, called DistrEdge, to provide CNN inference distribution strategies in environments with multiple IoT edge devices. By addressing heterogeneity in devices, network conditions, and nonlinear characters of CNN computation, DistrEdge is adaptive to a wide range of cases (e.g., with different network conditions, various device types) using deep reinforcement learning technology. We utilize the latest embedded AI computing devices (e.g., NVIDIA Jetson products) to construct cases of heterogeneous devices' types in the experiment. Based on our evaluations, DistrEdge can properly adjust the distribution strategy according to the devices' computing characters and the network conditions. It achieves 1.1 to 3 x speedup compared to state-of-the-art methods.
ISSN:1530-2075
DOI:10.1109/IPDPS53621.2022.00110