Data-Driven Algorithms for Gaussian Measurement Matrix Design in Compressive Sensing
In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous i.i.d. Gaussian design, we associate different variances with different signal entries, so that we may utilize training data to focus more e...
Uložené v:
| Vydané v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 5523 - 5527 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
23.05.2022
|
| Predmet: | |
| ISSN: | 2379-190X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous i.i.d. Gaussian design, we associate different variances with different signal entries, so that we may utilize training data to focus more energy on the "most important" parts of the signal. Our first algorithm is based on simple variance-proportional sampling (i.e., place more energy at locations where the signal tends to vary more), and our second overcomes limitations of the first by iteratively up-weighing and down-weighing the variance values according to reconstructions performed on the training signals. Our algorithms enjoy the advantages of being simple and versatile, in the sense of being compatible with a diverse range of signal priors and/or decoding rules. We experimentally demonstrate the effectiveness of our algorithms under both generative priors with gradient-based recovery and sparse priors with ℓ 1 -minimization based recovery. |
|---|---|
| AbstractList | In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous i.i.d. Gaussian design, we associate different variances with different signal entries, so that we may utilize training data to focus more energy on the "most important" parts of the signal. Our first algorithm is based on simple variance-proportional sampling (i.e., place more energy at locations where the signal tends to vary more), and our second overcomes limitations of the first by iteratively up-weighing and down-weighing the variance values according to reconstructions performed on the training signals. Our algorithms enjoy the advantages of being simple and versatile, in the sense of being compatible with a diverse range of signal priors and/or decoding rules. We experimentally demonstrate the effectiveness of our algorithms under both generative priors with gradient-based recovery and sparse priors with ℓ 1 -minimization based recovery. |
| Author | Sun, Yang Scarlett, Jonathan |
| Author_xml | – sequence: 1 givenname: Yang surname: Sun fullname: Sun, Yang organization: National University of Singapore,Department of Computer Science – sequence: 2 givenname: Jonathan surname: Scarlett fullname: Scarlett, Jonathan organization: National University of Singapore,Department of Computer Science |
| BookMark | eNotkN9KwzAYxaMouE2fwJu8QGf-NE1yOVqdwoZCJ3g3vq1fZmRNR9IN9_YWHBzOuflxOJwxuQldQEIoZ1POmX16K2d1_ZFLK8RUsMGsznXB9RUZ86JQORtUXJORkNpm3LKvOzJO6YcxZnRuRmRVQQ9ZFf0JA53td130_XebqOsincMxJQ-BLhHSMWKLoadL6KP_pRUmvwvUB1p27SHiAJ6Q1hiSD7t7cutgn_DhkhPy-fK8Kl-zxft8GLzIvGCyz8Dm1jhmpWw2tgHUUhkO4FSjjWkYAjc2V0oXSljJGuc21mmxbdyWg3LSyAl5_O_1iLg-RN9CPK8vD8g_RHhUJw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP43922.2022.9747617 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665405406 9781665405409 |
| EISSN | 2379-190X |
| EndPage | 5527 |
| ExternalDocumentID | 9747617 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation funderid: 10.13039/501100001321 |
| GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-a9498f0933db9dae73581aaf5d788d0ea1894557652930dffb9f72cdfc1a5f383 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187905163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-a9498f0933db9dae73581aaf5d788d0ea1894557652930dffb9f72cdfc1a5f383 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9747617 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May-23 |
| PublicationDateYYYYMMDD | 2022-05-23 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 |
| Score | 2.182623 |
| Snippet | In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5523 |
| SubjectTerms | Compressive sensing data-driven techniques generative priors measurement matrix design Power measurement Sensors Signal processing Signal processing algorithms Sparse matrices Training Training data |
| Title | Data-Driven Algorithms for Gaussian Measurement Matrix Design in Compressive Sensing |
| URI | https://ieeexplore.ieee.org/document/9747617 |
| WOSCitedRecordID | wos000864187905163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0A8aAXP8D4nR48WukuXbo9EhA1EUICGm6ku22RRBcDC_Hn2ykImnjxstls0mwyTebNTN97Bbg2QtZDrgNas2FEOdcRTQKpqE5kwnQSp4Fn-b48iW43Hg5lrwA3Gy2MMcaTz8wtvvqzfD1NFzgqq2Lt6xC3CEUhxEqrtcm6seDxN1OHyepjs9Hv9xzahqi2co_12l-XqHgMae__7-8HUNmK8UhvAzOHUDDZEez98BEsw6ClckVbM8xcpPE2nrqO__V9TlxBSu7VYo5CSdLZTgNJB435P0nL0zfIJCOYFjwjdmlIHznt2bgCz-27QfOBrq9LoJOQ1XKqJJexxQmFC7RWRqC1mVI20q7N1cyoIJY8cv1F5CCeaWsTaUWYapsGKrKuUz2GUjbNzAkQlkbaWOWwu-76R54mMbNMoDW-q2ZcBXMKZYzP6GPliDFah-bs78_nsItbgGfuYe0CSvlsYS5hJ13mk_nsym_jF7-FnsY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmqgXP8D4bQ8erXSXlt0eCYgQgZCAhhvpblsk0cXwFX--nQVBEy9eNptNmk2mybyZ6XuvALcmkCWfa48WrS8o51rQyJOK6khGTEdh7KUs35dm0G6H_b7sZOBurYUxxqTkM3OPr-lZvh7HcxyVFbD2dYi7BduCc99bqrXWeTcMePjN1WGy0KiUu92Ow1sf9VbusVr96xqVFEVqB__7_yHkN3I80lkDzRFkTHIM-z-cBHPQq6qZotUJ5i5SfhuOXc__-j4lriQlj2o-RakkaW3mgaSF1vyfpJoSOMgoIZgYUk7swpAustqTYR6eaw-9Sp2uLkygI58VZ1RJLkOLMwoXaq1MgOZmSlmhXaOrmVFeKLlwHYZwIM-0tZG0gR9rG3tKWNernkA2GSfmFAiLhTZWOfQuuQ6Sx1HILAvQHN_VM66GOYMcxmfwsfTEGKxCc_735xvYrfdazUGz0X66gD3cDjyB94uXkJ1N5uYKduLFbDSdXKdb-gUww6IN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Data-Driven+Algorithms+for+Gaussian+Measurement+Matrix+Design+in+Compressive+Sensing&rft.au=Sun%2C+Yang&rft.au=Scarlett%2C+Jonathan&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=5523&rft.epage=5527&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747617&rft.externalDocID=9747617 |