Data-Driven Algorithms for Gaussian Measurement Matrix Design in Compressive Sensing

In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous i.i.d. Gaussian design, we associate different variances with different signal entries, so that we may utilize training data to focus more e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 5523 - 5527
Hlavní autori: Sun, Yang, Scarlett, Jonathan
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 23.05.2022
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous i.i.d. Gaussian design, we associate different variances with different signal entries, so that we may utilize training data to focus more energy on the "most important" parts of the signal. Our first algorithm is based on simple variance-proportional sampling (i.e., place more energy at locations where the signal tends to vary more), and our second overcomes limitations of the first by iteratively up-weighing and down-weighing the variance values according to reconstructions performed on the training signals. Our algorithms enjoy the advantages of being simple and versatile, in the sense of being compatible with a diverse range of signal priors and/or decoding rules. We experimentally demonstrate the effectiveness of our algorithms under both generative priors with gradient-based recovery and sparse priors with ℓ 1 -minimization based recovery.
AbstractList In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous i.i.d. Gaussian design, we associate different variances with different signal entries, so that we may utilize training data to focus more energy on the "most important" parts of the signal. Our first algorithm is based on simple variance-proportional sampling (i.e., place more energy at locations where the signal tends to vary more), and our second overcomes limitations of the first by iteratively up-weighing and down-weighing the variance values according to reconstructions performed on the training signals. Our algorithms enjoy the advantages of being simple and versatile, in the sense of being compatible with a diverse range of signal priors and/or decoding rules. We experimentally demonstrate the effectiveness of our algorithms under both generative priors with gradient-based recovery and sparse priors with ℓ 1 -minimization based recovery.
Author Sun, Yang
Scarlett, Jonathan
Author_xml – sequence: 1
  givenname: Yang
  surname: Sun
  fullname: Sun, Yang
  organization: National University of Singapore,Department of Computer Science
– sequence: 2
  givenname: Jonathan
  surname: Scarlett
  fullname: Scarlett, Jonathan
  organization: National University of Singapore,Department of Computer Science
BookMark eNotkN9KwzAYxaMouE2fwJu8QGf-NE1yOVqdwoZCJ3g3vq1fZmRNR9IN9_YWHBzOuflxOJwxuQldQEIoZ1POmX16K2d1_ZFLK8RUsMGsznXB9RUZ86JQORtUXJORkNpm3LKvOzJO6YcxZnRuRmRVQQ9ZFf0JA53td130_XebqOsincMxJQ-BLhHSMWKLoadL6KP_pRUmvwvUB1p27SHiAJ6Q1hiSD7t7cutgn_DhkhPy-fK8Kl-zxft8GLzIvGCyz8Dm1jhmpWw2tgHUUhkO4FSjjWkYAjc2V0oXSljJGuc21mmxbdyWg3LSyAl5_O_1iLg-RN9CPK8vD8g_RHhUJw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747617
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 5527
ExternalDocumentID 9747617
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation
  funderid: 10.13039/501100001321
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-a9498f0933db9dae73581aaf5d788d0ea1894557652930dffb9f72cdfc1a5f383
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864187905163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a9498f0933db9dae73581aaf5d788d0ea1894557652930dffb9f72cdfc1a5f383
PageCount 5
ParticipantIDs ieee_primary_9747617
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.182623
Snippet In this paper, we provide two data-driven algorithms for learning compressive sensing measurement matrices with Gaussian entries. In contrast to the ubiquitous...
SourceID ieee
SourceType Publisher
StartPage 5523
SubjectTerms Compressive sensing
data-driven techniques
generative priors
measurement matrix design
Power measurement
Sensors
Signal processing
Signal processing algorithms
Sparse matrices
Training
Training data
Title Data-Driven Algorithms for Gaussian Measurement Matrix Design in Compressive Sensing
URI https://ieeexplore.ieee.org/document/9747617
WOSCitedRecordID wos000864187905163&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0A8aAXP8D4nR48WukuXbo9EhA1EUICGm6ku22RRBcDC_Hn2ykImnjxstls0mwyTebNTN97Bbg2QtZDrgNas2FEOdcRTQKpqE5kwnQSp4Fn-b48iW43Hg5lrwA3Gy2MMcaTz8wtvvqzfD1NFzgqq2Lt6xC3CEUhxEqrtcm6seDxN1OHyepjs9Hv9xzahqi2co_12l-XqHgMae__7-8HUNmK8UhvAzOHUDDZEez98BEsw6ClckVbM8xcpPE2nrqO__V9TlxBSu7VYo5CSdLZTgNJB435P0nL0zfIJCOYFjwjdmlIHznt2bgCz-27QfOBrq9LoJOQ1XKqJJexxQmFC7RWRqC1mVI20q7N1cyoIJY8cv1F5CCeaWsTaUWYapsGKrKuUz2GUjbNzAkQlkbaWOWwu-76R54mMbNMoDW-q2ZcBXMKZYzP6GPliDFah-bs78_nsItbgGfuYe0CSvlsYS5hJ13mk_nsym_jF7-FnsY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmqgXP8D4bQ8erXSXlt0eCYgQgZCAhhvpblsk0cXwFX--nQVBEy9eNptNmk2mybyZ6XuvALcmkCWfa48WrS8o51rQyJOK6khGTEdh7KUs35dm0G6H_b7sZOBurYUxxqTkM3OPr-lZvh7HcxyVFbD2dYi7BduCc99bqrXWeTcMePjN1WGy0KiUu92Ow1sf9VbusVr96xqVFEVqB__7_yHkN3I80lkDzRFkTHIM-z-cBHPQq6qZotUJ5i5SfhuOXc__-j4lriQlj2o-RakkaW3mgaSF1vyfpJoSOMgoIZgYUk7swpAustqTYR6eaw-9Sp2uLkygI58VZ1RJLkOLMwoXaq1MgOZmSlmhXaOrmVFeKLlwHYZwIM-0tZG0gR9rG3tKWNernkA2GSfmFAiLhTZWOfQuuQ6Sx1HILAvQHN_VM66GOYMcxmfwsfTEGKxCc_735xvYrfdazUGz0X66gD3cDjyB94uXkJ1N5uYKduLFbDSdXKdb-gUww6IN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Data-Driven+Algorithms+for+Gaussian+Measurement+Matrix+Design+in+Compressive+Sensing&rft.au=Sun%2C+Yang&rft.au=Scarlett%2C+Jonathan&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=5523&rft.epage=5527&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747617&rft.externalDocID=9747617