Parallel Implementation of MOEA/D with Parallel Weight Vectors for Feature Selection

In machine learning field, feature selection can be treated as a bi-objective optimization problem. It is reported that a decomposition-based evolutionary multi-objective optimization algorithm (i.e., MOEA/D-STAT) has good diversity performance when coping with feature selection. However, feature se...

Full description

Saved in:
Bibliographic Details
Published in:Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 1524 - 1531
Main Authors: Liao, Weiduo, Ishibuchi, Hisao, Meng Pang, Lie, Shang, Ke
Format: Conference Proceeding
Language:English
Published: IEEE 11.10.2020
Subjects:
ISSN:2577-1655
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In machine learning field, feature selection can be treated as a bi-objective optimization problem. It is reported that a decomposition-based evolutionary multi-objective optimization algorithm (i.e., MOEA/D-STAT) has good diversity performance when coping with feature selection. However, feature selection is also a time-consuming problem considering a large dataset it involves. The computation time can be easily reduced by introducing the parallelization into MOEA/D-STAT, thanks to the decomposition idea of MOEA/D. To the best of our knowledge, this is the first attempt to implement the parallelization of MOEA/D-STAT for feature selection. In this paper, we consider both master-slave models and island models, which are two different approaches of parallelization. In the master-slave models, different offspring assignment mechanisms are considered. In the island models, different island size specification mechanisms are examined. Our experimental results show that the master-slave models can achieve higher speedup and better performance than the island models.
AbstractList In machine learning field, feature selection can be treated as a bi-objective optimization problem. It is reported that a decomposition-based evolutionary multi-objective optimization algorithm (i.e., MOEA/D-STAT) has good diversity performance when coping with feature selection. However, feature selection is also a time-consuming problem considering a large dataset it involves. The computation time can be easily reduced by introducing the parallelization into MOEA/D-STAT, thanks to the decomposition idea of MOEA/D. To the best of our knowledge, this is the first attempt to implement the parallelization of MOEA/D-STAT for feature selection. In this paper, we consider both master-slave models and island models, which are two different approaches of parallelization. In the master-slave models, different offspring assignment mechanisms are considered. In the island models, different island size specification mechanisms are examined. Our experimental results show that the master-slave models can achieve higher speedup and better performance than the island models.
Author Shang, Ke
Liao, Weiduo
Ishibuchi, Hisao
Meng Pang, Lie
Author_xml – sequence: 1
  givenname: Weiduo
  surname: Liao
  fullname: Liao, Weiduo
  email: liaowd@mail.sustech.edu.cn
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
– sequence: 2
  givenname: Hisao
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisao@sustech.edu.cn
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
– sequence: 3
  givenname: Lie
  surname: Meng Pang
  fullname: Meng Pang, Lie
  email: panglm@sustech.edu.cn
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
– sequence: 4
  givenname: Ke
  surname: Shang
  fullname: Shang, Ke
  email: kshang@foxmail.com
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
BookMark eNo9kF1LwzAYhaMouM39AhHyB9olb5omuRx108HGhE29HEn71kX6MdrI8N9bcHh14PA85-KMyU3TNkjII2cx58zMdpssAaNkDAxYbEALUHBFpkZprkBzLSGFazICqVTEUynvyLjvv9hAJ1yPyP7VdraqsKKr-lRhjU2wwbcNbUu62S7msyd69uFI_7EP9J_HQN8xD23X07Lt6BJt-O6Q7rAa2kG-J7elrXqcXnJC3paLffYSrbfPq2y-jjwwESKrE1UkUqBBJl2uC4fCFRLQpjlYk1ijS6GlMk4U3DmWF7zM7UBpJ51JuZiQh79dj4iHU-dr2_0cLieIX5GsU-k
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC42975.2020.9283272
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 9781728185262
1728185262
EISSN 2577-1655
EndPage 1531
ExternalDocumentID 9283272
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-a847d453e9e05bc8dbe3bd52ea6c2a94a98f38579b3d1bb0cd1fcadbe8b5b9613
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687430601086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a847d453e9e05bc8dbe3bd52ea6c2a94a98f38579b3d1bb0cd1fcadbe8b5b9613
PageCount 8
ParticipantIDs ieee_primary_9283272
PublicationCentury 2000
PublicationDate 2020-Oct.-11
PublicationDateYYYYMMDD 2020-10-11
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-11
  day: 11
PublicationDecade 2020
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.190599
Snippet In machine learning field, feature selection can be treated as a bi-objective optimization problem. It is reported that a decomposition-based evolutionary...
SourceID ieee
SourceType Publisher
StartPage 1524
SubjectTerms Computational modeling
Cybernetics
Feature extraction
Feature selection
island models
Machine learning
Machine learning algorithms
Master-slave
master-slave models
MOEA/D-STAT
Optimization
parallel weight vectors
parallelization
Title Parallel Implementation of MOEA/D with Parallel Weight Vectors for Feature Selection
URI https://ieeexplore.ieee.org/document/9283272
WOSCitedRecordID wos000687430601086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAX7UN8k4MHBbfN7mY3yVFqi5fWQqv2VvJaKNStbFt_v0m6rApevIUwIZAw-SaTfPMB3AitSMZEGmgtcEAkFYE0GgfaYoMmOlIqlV5sgo5GbDbj4xrcV1wYY4z_fGY6runf8vVKbV2qrMudrg61B-4epemOq1VdrjAJWcnQCTHvToY94kij9gYY4U458JeCigeQwdH_pj6G9jcTD40rjGlAzeRNOPxRRLAJjdI91-i2rCF914LpWBROJWWJfPnf95JhlKNVhobP_YfuI3IZWFSZvfkUKXr1Sfw1sqEsctHhtjBo4qVy7OA2vAz6095TUAooBIsIx5tAWOjRJIkNNziRimlpYqmTyIhURYITwVkWs4RyGetQSqx0mClhrZhMJLdAfwL1fJWbU0AmUcoeqkIyEpJEW69WNlbi1FoRKQw9g5ZbtPnHrkbGvFyv87-7L-DA7YvDgDC8hPqm2Jor2Fefm8W6uPYb-wX7dKXz
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFdSL9iG-zcGDgttmd5Pu5ii1pWJbC63aW8lroaBb2bb-fpN0WRW8eAthQiBh8k0m-eYDuOJKkiTmLU8pjj0iIu4JrbCnDDYoogIpW8KJTUTDYTydslEJbgsujNbafT7TDdt0b_lqIdc2VdZkVlcnMgfullXOohu2VnG9wsSPc46Oj1lzPGgTSxs1d8AAN_KhvzRUHIR09_83-QHUv7l4aFSgTAVKOq3C3o8yglWo5A66RNd5FembGkxGPLM6KW_IFQB-zzlGKVokaPDUuWveI5uDRYXZq0uSoheXxl8iE8wiGx-uM43GTizHDK7Dc7czafe8XELBmwc4XHncgI8iNNRMYypkrIQOhaKB5i0ZcEY4i5MwphETofKFwFL5ieTGKhZUMAP1h1BOF6k-AqSplOZY5SImPqHK-LU00RKLjBURXEfHULOLNvvYVMmY5et18nf3Jez0JoP-rP8wfDyFXbtHFhF8_wzKq2ytz2Fbfq7my-zCbfIX0-2pPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Parallel+Implementation+of+MOEA%2FD+with+Parallel+Weight+Vectors+for+Feature+Selection&rft.au=Liao%2C+Weiduo&rft.au=Ishibuchi%2C+Hisao&rft.au=Meng+Pang%2C+Lie&rft.au=Shang%2C+Ke&rft.date=2020-10-11&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=1524&rft.epage=1531&rft_id=info:doi/10.1109%2FSMC42975.2020.9283272&rft.externalDocID=9283272