Flaw Detection from Ultrasonic Images using YOLO and SSD
Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space industry. Due to a vast amount of time needed for a human expert to perform inspection it is practical for a computer to take over that task. Some...
Saved in:
| Published in: | 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 163 - 168 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.09.2019
|
| Subjects: | |
| ISSN: | 1849-2266 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space industry. Due to a vast amount of time needed for a human expert to perform inspection it is practical for a computer to take over that task. Some attempts have been made to produce algorithms for automatic UT scan inspection mainly using older, non-flexible analysis methods. In this paper, two deep learning based methods for flaw detection are presented, YOLO and SSD convolutional neural networks. The methods' performance was tested on a dataset that was acquired by scanning metal blocks containing different types of defects. YOLO achieved average precision (AP) of 89.7% while SSD achieved AP of 84.5 %. |
|---|---|
| AbstractList | Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space industry. Due to a vast amount of time needed for a human expert to perform inspection it is practical for a computer to take over that task. Some attempts have been made to produce algorithms for automatic UT scan inspection mainly using older, non-flexible analysis methods. In this paper, two deep learning based methods for flaw detection are presented, YOLO and SSD convolutional neural networks. The methods' performance was tested on a dataset that was acquired by scanning metal blocks containing different types of defects. YOLO achieved average precision (AP) of 89.7% while SSD achieved AP of 84.5 %. |
| Author | Posilovic, Luka Medak, Duje Loncaric, Sven Subasic, Marko Budimir, Marko Petkovic, Tomislav |
| Author_xml | – sequence: 1 givenname: Luka surname: Posilovic fullname: Posilovic, Luka email: luka.posilovic@fer.hr organization: Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia – sequence: 2 givenname: Duje surname: Medak fullname: Medak, Duje email: duje.medak@fer.hr organization: Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia – sequence: 3 givenname: Marko surname: Subasic fullname: Subasic, Marko organization: Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia – sequence: 4 givenname: Tomislav surname: Petkovic fullname: Petkovic, Tomislav organization: Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia – sequence: 5 givenname: Marko surname: Budimir fullname: Budimir, Marko organization: INETEC Institute for Nuclear Technology, Dolenica, Croatia – sequence: 6 givenname: Sven surname: Loncaric fullname: Loncaric, Sven organization: Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia |
| BookMark | eNotz8tKw0AYQOFRFKw1DyBu5gUS535ZltZqIBAhduGqTGb-lIFmIpmI-PYu7OrsPjj36CZNCRB6pKSilNjnunvfVIxQWxmjjGX2ChVWG6qZoZwKIq_RihphS8aUukNFzrEnwkgitDUrZPZn94N3sIBf4pTwME8jPpyX2eUpRY_r0Z0g4-8c0wl_tk2LXQq463YP6HZw5wzFpWt02L98bN_Kpn2tt5umjIzwpXQqEE80s-B6oYJmRASuQQkNQWqnCWg-COU8BzbwnugQglRBST8YLyXja_T070YAOH7NcXTz7_Hyyv8ATVlIbA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISPA.2019.8868929 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728131405 1728131405 |
| EISSN | 1849-2266 |
| EndPage | 168 |
| ExternalDocumentID | 8868929 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ABLEC ALMA_UNASSIGNED_HOLDINGS CBEJK IEGSK RIE RIL |
| ID | FETCH-LOGICAL-i203t-a6d0c0729eab46d7204d37e647ed57a70e73f46ac3e2f3b07ddd56d65cf8c5523 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865974800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jun 26 19:27:11 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-a6d0c0729eab46d7204d37e647ed57a70e73f46ac3e2f3b07ddd56d65cf8c5523 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8868929 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Sept. |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) |
| PublicationTitleAbbrev | ISPA |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib048504798 ssib042470063 |
| Score | 1.9498943 |
| Snippet | Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 163 |
| SubjectTerms | Acoustics automated flaw detection Computer architecture convolutional neural networks Discrete wavelet transforms image analysis image processing Inspection non-destructive testing Probes Testing Training ultrasonic imaging |
| Title | Flaw Detection from Ultrasonic Images using YOLO and SSD |
| URI | https://ieeexplore.ieee.org/document/8868929 |
| WOSCitedRecordID | wos000865974800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtelm89ijWIsFaQu1UE8lycxKoW6lu9W_b7KtFcGLtySEkElCvkzmmxlCrm3HZdhBHimwIvIv4izyuB5HHlks19pa4VyVbEINBno6TUc1crPzhUHEinyGt6FY2fJh6dbhq6yttdQezuukrpTc-Gp9n50kTlSA211dixA8XW8NmR2Wtvvj0V3gcoXDUY3zK6FKhSe9g__N5JC0fhzz6GgHOUekhnmT6N7CfNIulhWrKqfBY4ROFuXKFCHuLe2_-TujoIHh_kpfhk9DanKg43G3RSa9h-f7x2ibECGax4yXkZHAXAj1jcYmEkJ-GeAKZaIQhDKKoeJZIo3jGGfcMgUAQoIULtNOeJXzmDTyZY4nhBrhfH9r0RivHKdgOIOEW-H7MYA0PSXNIPXsfRPzYrYV-Ozv5nOyHxZ2w726II1ytcZLsuc-ynmxuqo26gv7YpMV |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QTfSkBoxve_DoStk-92hUAhGBBEjwRPqYNSS4GFj079suiDHx4q1tmqbTNv06nW9mELo2dZtCHWgkneGRfxGnkcf1OPLIYqhSxnBri2QTstNRo1HSK6GbjS8MABTkM7gNxcKW72Z2Gb7KakoJ5eF8C21zxmKy8tb6Pj0sZjIA7qaueAifrtamzDpJaq1-7y6wucLxKEb6lVKlQJTG_v_mcoCqP655uLcBnUNUgqyCVGOqP_ED5AWvKsPBZwQPp_lcL0LkW9x687fGAgeO-yt-6ba7WGcO9_sPVTRsPA7um9E6JUI0iQnNIy0csSHYN2jDhAsZZhyVIJgEx6WWBCRNmdCWQpxSQ6RzjgsnuE2V5V7pPELlbJbBMcKaW9_fGNDaq8eJ05Q4Rg33_YhzSXKCKkHq8fsq6sV4LfDp381XaLc5eG6P263O0xnaC4u8YmKdo3I-X8IF2rEf-WQxvyw27QvVn5Zc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+11th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=Flaw+Detection+from+Ultrasonic+Images+using+YOLO+and+SSD&rft.au=Posilovic%2C+Luka&rft.au=Medak%2C+Duje&rft.au=Subasic%2C+Marko&rft.au=Petkovic%2C+Tomislav&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1109%2FISPA.2019.8868929&rft.externalDocID=8868929 |