A Single-Exponential Time 2-Approximation Algorithm for Treewidth
We give an algorithm, that given an n-vertex graph G and an integer k, in time 2 O(k) n either outputs a tree decomposition of G of width at most 2k + 1 or determines that the treewidth of G is larger than k. This is the first 2-approximation algorithm for treewidth that is faster than the known exa...
Uloženo v:
| Vydáno v: | Proceedings / annual Symposium on Foundations of Computer Science s. 184 - 192 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.02.2022
|
| Témata: | |
| ISSN: | 2575-8454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give an algorithm, that given an n-vertex graph G and an integer k, in time 2 O(k) n either outputs a tree decomposition of G of width at most 2k + 1 or determines that the treewidth of G is larger than k. This is the first 2-approximation algorithm for treewidth that is faster than the known exact algorithms. In particular, our algorithm improves upon both the previous best approximation ratio of 5 in time 2 O(k) n and the previous best approximation ratio of 3 in time 2 O(k) n O(1) , both given by Bodlaender et al. [FOCS 2013, SICOMP 2016]. Our algorithm is based on a local improvement method adapted from a proof of Bellenbaum and Diestel [Comb. Probab. Comput. 2002]. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS52979.2021.00026 |