Robust Diffusion Adaptive Networks with Noisy Link and Input

In this paper, we study the problem of adaptive parameter estimation for multi-agent distributed networks, where the input regression vectors of network nodes contain Gaussian noises, while the output values and the communication link are polluted by impulse noises. In this case, the estimation perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control Conference S. 3132 - 3137
Hauptverfasser: Zhu, Chen, Jia, Lijuan, Kanae, Shunshoku, Yang, Zijiang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Technical Committee on Control Theory, Chinese Association of Automation 25.07.2022
Schlagworte:
ISSN:1934-1768
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study the problem of adaptive parameter estimation for multi-agent distributed networks, where the input regression vectors of network nodes contain Gaussian noises, while the output values and the communication link are polluted by impulse noises. In this case, the estimation performance of traditional diffusion LMS algorithms and most of the state-of-the-art robust distributed algorithms for output impulse noises will degrade significantly. Aiming at this problem, the Minimal Disturbance Bias-Compensated Diffusion Least Mean Square (MDBC-DLMS) algorithm proposed in this paper can effectively suppress noise interference and achieve an acceptable estimation result of the target parameter vector. MDBC-DLMS uses the principle of minimal disturbance to dynamically update the combination coefficients of the diffusion algorithm to effectively suppress the output and link impulse noise. At the same time, it performs dynamic real-time estimation of the input noise variance information to compensate for the estimation bias caused by the input noise. The simulation results show the excellent estimation performance and effectiveness of the method proposed in this paper, and it can accurately estimate the variance information of input noise at the same time.
AbstractList In this paper, we study the problem of adaptive parameter estimation for multi-agent distributed networks, where the input regression vectors of network nodes contain Gaussian noises, while the output values and the communication link are polluted by impulse noises. In this case, the estimation performance of traditional diffusion LMS algorithms and most of the state-of-the-art robust distributed algorithms for output impulse noises will degrade significantly. Aiming at this problem, the Minimal Disturbance Bias-Compensated Diffusion Least Mean Square (MDBC-DLMS) algorithm proposed in this paper can effectively suppress noise interference and achieve an acceptable estimation result of the target parameter vector. MDBC-DLMS uses the principle of minimal disturbance to dynamically update the combination coefficients of the diffusion algorithm to effectively suppress the output and link impulse noise. At the same time, it performs dynamic real-time estimation of the input noise variance information to compensate for the estimation bias caused by the input noise. The simulation results show the excellent estimation performance and effectiveness of the method proposed in this paper, and it can accurately estimate the variance information of input noise at the same time.
Author Zhu, Chen
Kanae, Shunshoku
Yang, Zijiang
Jia, Lijuan
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhu
  fullname: Zhu, Chen
  organization: Beijing Institute of Technology,School of Information and Electronics,Beijing,P. R. China,100081
– sequence: 2
  givenname: Lijuan
  surname: Jia
  fullname: Jia, Lijuan
  email: jlj@bit.edu.cn
  organization: Beijing Institute of Technology,School of Information and Electronics,Beijing,P. R. China,100081
– sequence: 3
  givenname: Shunshoku
  surname: Kanae
  fullname: Kanae, Shunshoku
  email: kanae.s@junshin-u.ac.jp
  organization: Junshin Gakuen University,Faculty of Health Sciences,Department of Medical Engineering,Fukuoka,Japan,815–8510
– sequence: 4
  givenname: Zijiang
  surname: Yang
  fullname: Yang, Zijiang
  email: shikoh.yoh.zijiang@vc.ibaraki.ac.jp
  organization: College of Engineering, Ibaraki University,Department of Mechanical Systems Engineering,Ibaraki,Japan,316–8511
BookMark eNotj91KwzAYQKMouM09gSB5gdb8fk3Am1GnDsoE0euR5gfjtC1N6tjbKzjOxbk7cOboous7j9AtJSXjmuq7uq6lBICSEcZKrQmTlTpDS10prVQlFZUcztGMai4KWoG6QvOUPgkBoimfofvXvp1Sxg8xhCnFvsMrZ4Ycfzze-nzox33Ch5g_8LaP6Yib2O2x6RzedMOUr9FlMF_JL09eoPfH9Vv9XDQvT5t61RSREZ4LI4yiWnNPDQkOhDWgrfkDJLMkGAjOWelCS62tGIDwrSCtA1BCetYavkA3_93ovd8NY_w243F3muW_srFL_Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/CCC55666.2022.9902578
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9789887581536
9887581534
EISSN 1934-1768
EndPage 3137
ExternalDocumentID 9902578
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-a4a81993e1a0fd64ca69cacac652c0fa6fddc5dfb1cc72664eb40bd66845e2ba3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932071603043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:18:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a4a81993e1a0fd64ca69cacac652c0fa6fddc5dfb1cc72664eb40bd66845e2ba3
PageCount 6
ParticipantIDs ieee_primary_9902578
PublicationCentury 2000
PublicationDate 2022-July-25
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-25
  day: 25
PublicationDecade 2020
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev CCC
PublicationYear 2022
Publisher Technical Committee on Control Theory, Chinese Association of Automation
Publisher_xml – name: Technical Committee on Control Theory, Chinese Association of Automation
SSID ssj0060913
Score 2.1890335
Snippet In this paper, we study the problem of adaptive parameter estimation for multi-agent distributed networks, where the input regression vectors of network nodes...
SourceID ieee
SourceType Publisher
StartPage 3132
SubjectTerms Adaptive Estimation
Adaptive systems
Bias Compensation
Distributed Network
Estimation
Gaussian noise
Heuristic algorithms
Impulsive Noise
Interference
Minimal Disturbance
Parameter estimation
Simulation
Title Robust Diffusion Adaptive Networks with Noisy Link and Input
URI https://ieeexplore.ieee.org/document/9902578
WOSCitedRecordID wos000932071603043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZt2WG77NGOvfFhx7ltnMR2YJeRrWwwQhnb6K34JcglKU0y2L-fnXQv2GX4Ygy2QcKSLOmTELqMkygMuQVigWsSAQARgRZEKGcdCAoqaetsvz7yLBOLRTLvoasvLIy1tk0-s2M_bWP5ptSNd5VNEh8T46KP-pyzDqv1KXWZr2_ZIYBpmATJJE3T2JkqPguB0vFm568WKq0Gme3-7-49NPqG4uH5l5LZRz1bHKCdH1UEh-j6qVRNVePbHKDxzi98Y-TKizGcdUneFfbuVpyVefWO_e8Ty8Lgh2LV1CP0Mrt7Tu_JpikCyek0rImMpPBJdzaQUzAs0pIlWrrBYqqnIBkYo2MDKtCaO-0bWUd1ZRgTUWypkuEhGhRlYY8QduxRIcS-haR7uu4Mq1WoOYvA6XHB4RgNPR2Wq67uxXJDgpO_l0_Rtie193vS-AwN6nVjz9GWfqvzan3RMusD2xCXDg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQXP6b4bR58tNuatmkKvkh1bDjLkCl7G_mEvrRjbQX_e5OuTgVfJC8hkATuyN3l7n53ADdB5HteqLSjdCgcX2vtUFdQh3JjHVCseVTX2X4bh0lCZ7No0oLbNRZGKVUnn6mundaxfJmLyrrKepGNiYV0AzZt56wGrfUld4mtcLnCAGMvcqNeHMeBMVZsHgLG3WbvryYqtQ4Z7P3v9n04-gbjoclazRxAS2WHsPujjmAH7l5yXhUleki1rqz7C91LtrCCDCWrNO8CWYcrSvK0-ED2_4lYJtEoW1TlEbwOHqfx0GnaIjgp7nulw3xGbdqdcllfS-ILRiLBzCABFn3NiJZSBFJzV4jQ6F9fGbpzSQj1A4U5846hneWZOgFkGMQ9HdgmkubxmjOU4J4Iia-NJqehPoWOpcN8sap8MW9IcPb38jVsD6fP4_l4lDydw44lu_WC4uAC2uWyUpewJd7LtFhe1Yz7BOnCmlc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Robust+Diffusion+Adaptive+Networks+with+Noisy+Link+and+Input&rft.au=Zhu%2C+Chen&rft.au=Jia%2C+Lijuan&rft.au=Kanae%2C+Shunshoku&rft.au=Yang%2C+Zijiang&rft.date=2022-07-25&rft.pub=Technical+Committee+on+Control+Theory%2C+Chinese+Association+of+Automation&rft.eissn=1934-1768&rft.spage=3132&rft.epage=3137&rft_id=info:doi/10.23919%2FCCC55666.2022.9902578&rft.externalDocID=9902578