Power System Sensitivity Matrix Estimation by Multivariable Least Squares Considering Mitigating Data Saturation

To online estimate the power system sensitivity matrix considering mitigating data saturation, a series of multivariable least-squares (MLS) algorithms are proposed and compared, including the ordinary MLS (OMLS), the weighted MLS (WMLS), the memory-limited OMLS (ML-ORMLS), the memory-limited WRMLS...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society s. 1676 - 1683
Hlavní autoři: Liang, Yingqi, Zhang, Junbo, Srinivasan, Dipti
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 18.10.2020
Témata:
ISSN:2577-1647
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To online estimate the power system sensitivity matrix considering mitigating data saturation, a series of multivariable least-squares (MLS) algorithms are proposed and compared, including the ordinary MLS (OMLS), the weighted MLS (WMLS), the memory-limited OMLS (ML-ORMLS), the memory-limited WRMLS (ML-WRMLS), and the memory-fading ML-WRMLS (MF-ML-WRMLS). Considering enhancing computational efficiency and accuracy by mitigating data saturation, the last three of them are specifically derived for sensitivity matrix online estimation using online-measured data. The effectiveness of the presented algorithms is verified and compared in the Nordic 32 system for voltage sensitivity matrix estimation. The results illustrate the prime algorithm in practice.
AbstractList To online estimate the power system sensitivity matrix considering mitigating data saturation, a series of multivariable least-squares (MLS) algorithms are proposed and compared, including the ordinary MLS (OMLS), the weighted MLS (WMLS), the memory-limited OMLS (ML-ORMLS), the memory-limited WRMLS (ML-WRMLS), and the memory-fading ML-WRMLS (MF-ML-WRMLS). Considering enhancing computational efficiency and accuracy by mitigating data saturation, the last three of them are specifically derived for sensitivity matrix online estimation using online-measured data. The effectiveness of the presented algorithms is verified and compared in the Nordic 32 system for voltage sensitivity matrix estimation. The results illustrate the prime algorithm in practice.
Author Zhang, Junbo
Srinivasan, Dipti
Liang, Yingqi
Author_xml – sequence: 1
  givenname: Yingqi
  surname: Liang
  fullname: Liang, Yingqi
  email: yingqi.liang@u.nus.edu
  organization: National University of Singapore,Department of Electrical and Computer Engineering,Singapore,Singapore
– sequence: 2
  givenname: Junbo
  surname: Zhang
  fullname: Zhang, Junbo
  email: epjbzhang@scut.edu.cn
  organization: South China University of Technology,School of Electrical Power,Guangzhou,China
– sequence: 3
  givenname: Dipti
  surname: Srinivasan
  fullname: Srinivasan, Dipti
  email: dipti@nus.edu.sg
  organization: National University of Singapore,Department of Electrical and Computer Engineering,Singapore,Singapore
BookMark eNotkN1OwkAQRlejiYg8gRfuCxT3f7uXpqKSgJhUr8m0nZJNoMXdReXtbZSrbzKTc5L5rslF13dIyB1nU86Zu5_PitWrktLJqWCCTZ3Qypj8jEyczbkVOdeKK31ORkJbm3Gj7BWZxOgrpoSyjGkzIvu3_hsDLY8x4Y6W2EWf_JdPR7qEFPwPncXkd5B839FqWB62wxmCh2qLdIEQEy0_DxAw0qIf4AaD7zZ0OVg2AzWMj5CAlpAO4c9yQy5b2EacnHJMPp5m78VLtlg9z4uHReYFkykDiTVyaNq2bqVsNDRcCtTc5Nq1WLXgtLJWgTOisTKvrcsrVjW1lNagNbUck9t_r0fE9T4MT4Tj-tSR_AWuqmDe
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IECON43393.2020.9254668
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728154145
1728154146
EISSN 2577-1647
EndPage 1683
ExternalDocumentID 9254668
Genre orig-research
GroupedDBID 6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
ID FETCH-LOGICAL-i203t-a3ece1adffcf33d5ad132e516859febfa954774a962d738c798b0bdc3376e76c3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637323701112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a3ece1adffcf33d5ad132e516859febfa954774a962d738c798b0bdc3376e76c3
PageCount 8
ParticipantIDs ieee_primary_9254668
PublicationCentury 2000
PublicationDate 2020-Oct.-18
PublicationDateYYYYMMDD 2020-10-18
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.-18
  day: 18
PublicationDecade 2020
PublicationTitle IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
PublicationTitleAbbrev IECON
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib042470056
Score 2.1910205
Snippet To online estimate the power system sensitivity matrix considering mitigating data saturation, a series of multivariable least-squares (MLS) algorithms are...
SourceID ieee
SourceType Publisher
StartPage 1676
SubjectTerms data saturation
multivariable regression
power system sensitivity matrix estimation
recursive least squares
Title Power System Sensitivity Matrix Estimation by Multivariable Least Squares Considering Mitigating Data Saturation
URI https://ieeexplore.ieee.org/document/9254668
WOSCitedRecordID wos000637323701112&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8OBJZRO_ycGj3domaZqzbii4MZjCbiMfL7DLNmc7_PPNa7uJ4MVbCDSFl4_X1_w-CLnX3JtMax8hBCriKvaRDkdlxKC6tAMhhK3MJuRkks_natoiDwcuDABU4DPoY7O6y3drW-KvsoFC8fYsb5O2lFnN1dqvHZ5yibKWDYQridXgBa0AOWOKhTIwjfvN079sVKosMjr53_tPSe-Hjkenh0RzRlqw6pLNFP3NaK04TmeIQ6-NIOgYVfe_6DBs3pqXSE3oRODgLhTGSJWir-jYQ2cfJbKP6N60MwxOx8tadCM0n3Sh6QyFP6tReuR9NHx7fI4a-4RomcasiDQDC4l23lvPmBPahcoTRJLlQnkwXivBw8efVlnqJMutVLmJjbMsnDkgM8vOSWe1XsEFobHzqdTSSG1DnAEhq1nY-jwHYb0w4pJ0MVqLTa2QsWgCdfV39zU5xgnBDJDkN6RTbEu4JUd2Vyw_t3fVtH4D1bymtA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QTfSkBozf9uDRwba263pWCEQgJGDCjXTda8IFEQfxz7evGxgTL96aJmuW14-3t_4-CHnU3GaJ1jZACFTAVWgD7Y7KgIG_tAMhhPFmE3I0SmczNa6Rpz0XBgA8-Axa2PR3-fm72eCvsrZC8fYkPSCHgvM4LNlau9XDYy5R2LICcUWhavfRDJAzppgrBOOwVT3_y0jF55Hu6f_e4Iw0fwh5dLxPNeekBssGWY3R4YyWmuN0gkj00gqCDlF3_4t23PYtmYk0c50IHdy60hjJUnSAnj108rFB_hHd2Xa6welwUcpuuOaLLjSdoPSnH6VJ3rqd6XMvqAwUgkUcsiLQDAxEOrfWWMZyoXNXe4KIklQoC5nVSnD3-adVEueSpUaqNAuz3DB36oBMDLsg9eX7Ei4JDXMbSy0zqY2LMyBoNXGbn6cgjBWZuCINjNZ8VWpkzKtAXf_d_UCOe9PhYD7oj15vyAlODuaDKL0l9WK9gTtyZLbF4nN976f4G6ugqfs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2020+The+46th+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Power+System+Sensitivity+Matrix+Estimation+by+Multivariable+Least+Squares+Considering+Mitigating+Data+Saturation&rft.au=Liang%2C+Yingqi&rft.au=Zhang%2C+Junbo&rft.au=Srinivasan%2C+Dipti&rft.date=2020-10-18&rft.pub=IEEE&rft.eissn=2577-1647&rft.spage=1676&rft.epage=1683&rft_id=info:doi/10.1109%2FIECON43393.2020.9254668&rft.externalDocID=9254668