PREMA: A Predictive Multi-Task Scheduling Algorithm For Preemptible Neural Processing Units

To amortize cost, cloud vendors providing DNN acceleration as a service to end-users employ consolidation and virtualization to share the underlying resources among multiple DNN service requests. This paper makes a case for a "preemptible" neural processing unit (NPU) and a "predictiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Symposium on High-Performance Computer Architecture s. 220 - 233
Hlavní autoři: Choi, Yujeong, Rhu, Minsoo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.02.2020
Témata:
ISSN:2378-203X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To amortize cost, cloud vendors providing DNN acceleration as a service to end-users employ consolidation and virtualization to share the underlying resources among multiple DNN service requests. This paper makes a case for a "preemptible" neural processing unit (NPU) and a "predictive" multi-task scheduler to meet the latency demands of high-priority inference while maintaining high throughput. We evaluate both the mechanisms that enable NPUs to be preemptible and the policies that utilize them to meet scheduling objectives. We show that preemptive NPU multi-tasking can achieve an average 7.8×, 1.4×, and 4.8× improvement in latency, throughput, and SLA satisfaction, respectively.
ISSN:2378-203X
DOI:10.1109/HPCA47549.2020.00027